A Simple Reward-Free Approach to Constrained Reinforcement Learning

International Conference on Machine Learning (ICML) 2022

Sobhan Miryoosefi, Chi Jin July 2022

Agent interactively takes some action in the Environment and receives some scalar reward for the action taken.

Goal: find policy that maximizes the cumulative scalar reward

Desired behavior is simple

 Agent needs to reach the "goal" as "quickly" as possibly (e.g., gridworld)

Desired behavior is simple

- Agent needs to reach the "goal" as "quickly" as possibly (e.g., gridworld)
- Agent playing a game where score is explicitly given (e.g., Atari game)

Desired behavior is simple

- Agent needs to reach the "goal" as "quickly" as possibly (e.g., gridworld)
- Agent playing a game where score is explicitly given (e.g., Atari game)

• . . .

Desired behavior is simple

- Agent needs to reach the "goal" as "quickly" as possibly (e.g., gridworld)
- Agent playing a game where score is explicitly given (e.g., Atari game)

• . . .

Desired behavior is simple

- Agent needs to reach the "goal" as "quickly" as possibly (e.g., gridworld)
- Agent playing a game where score is explicitly given (e.g., Atari game)

• . . .

Strategy: applying standard RL using positive and negative scalar rewards.

• Autonomous vehicle: not only get to the destination, but should also respect safety, fuel efficiency, and human comfort.

- Autonomous vehicle: not only get to the destination, but should also respect safety, fuel efficiency, and human comfort.
- Robot should not only fulfill its task, but should also control its wear and tear (e.g., limiting torque on its motors)

- Autonomous vehicle: not only get to the destination, but should also respect safety, fuel efficiency, and human comfort.
- Robot should not only fulfill its task, but should also control its wear and tear (e.g., limiting torque on its motors)

One Approach: applying standard RL

- Boiling down learning goal into a single scalar is challenging
- Agent might maximize the reward without satisfying our desired behavior
- Gets harder as desired behavior gets more complex

Better Approach: Constraint-Based RL

In many settings, it's more natural and easier to express some behaviors by constraints.

Framework that bridges Reward-free RL and Constrained RL

- Direct translation of any progress in Reward-free RL to Constrained RL
- While being modular, provides sharp sample complexity for the tabular setting
- Providing first sample complexity results for linear setting

Episodic vector-valued Markov Decision Process (VMDP) $\mathcal{M} = (\mathcal{S}, \mathcal{A}, H, \mathbb{P}, \mathbf{r})$ Same as MDP model except \mathbf{r} is *d*-dimensional

• vector-valued value function $oldsymbol{V}_h^{\pi}$ and $oldsymbol{Q}_h^{\pi}$

Scalarized MDP: For any $\theta \in \mathbb{R}^d$, define $\mathcal{M}_{\theta} = (\mathcal{S}, \mathcal{A}, H, \mathbb{P}, r_{\theta})$ where $r_{\theta} = \langle \theta, \mathbf{r} \rangle$

- scalarized value functions $V_h^{\pi}(\cdot; \theta)$ and $Q^{\pi}(\cdot, \cdot; \theta)$
- optimal value function $V_h^{\star}(\cdot; \theta)$ and $Q_h^{\star}(\cdot, \cdot; \theta)$

Learning Objective(s)

Assume C is a convex and compact set in \mathbb{R}^d .

Learning Objective(s)

Assume C is a convex and compact set in \mathbb{R}^d .

Task 3: Constrained RL

Assume utility function $u = \{u_h : S \times A \to \mathbb{R}\}_{h=1}^H$

$$\max_{\pi} \quad \mathbb{E}_{\pi}[\sum_{h} u_{h}(s_{h}, a_{h})]$$

s.t. $\boldsymbol{V}_{1}^{\pi}(s_{1}) \in \mathcal{C}$

Learning Objective(s)

Assume C is a convex and compact set in \mathbb{R}^d .

Task 2: ApproachabilityTask 3: Constrained RL
Assume utility function
 $u = \{u_h : S \times A \rightarrow \mathbb{R}\}_{h=1}^H$ \min_{π} $\operatorname{dist}(V_1^{\pi}(s_1), \mathcal{C})$ \max_{π} $\mathbb{E}_{\pi}[\sum_{h} u_h(s_h, a_h)]$
s.t. $V_1^{\pi}(s_1) \in \mathcal{C}$

Assume C is a convex and compact set in \mathbb{R}^d .

Task 1: Reward-free After exploration phase, $\{r_h(s_h^k, a_h^k)\}_{(k,h)\in[K]\times[H]}$ are revealed for any $\theta \in \mathbb{R}^d$, algorithm should outputs the (near-)optimal policy π_{θ} that maximizes $V_1^{\pi_{\theta}}(s_1; \theta)$

Task 2: Approachability

 $\min_{\boldsymbol{\tau}} \quad \operatorname{dist} \left(\boldsymbol{V}_{1}^{\pi}(\boldsymbol{s}_{1}), \boldsymbol{\mathcal{C}} \right)$

Task 3: Constrained RL Assume utility function $u = \{u_h : S \times A \to \mathbb{R}\}_{h=1}^H$

$$\max_{\pi} \quad \mathbb{E}_{\pi}[\sum_{h} u_{h}(s_{h}, a_{h})]$$
s.t. $\boldsymbol{V}_{1}^{\pi}(s_{1}) \in \mathcal{C}$

Task 1: Reward-free

Task 2: Approachability Task 3: Constrained RL

	Algorithm	T1: Reward-free	T2: Approachability	T3: CMDP
Tabular	[WBY20]	$ ilde{\mathcal{O}}(\min\{d,S\}H^4SA/\epsilon^2)$	-	-
	[BDL+20]	-	-	$ ilde{\mathcal{O}}(d^2H^3S^2A/\epsilon^2)$
	[YTZS21]	-	$ ilde{\mathcal{O}}(\min\{d,S\}H^3SA/\epsilon^2)$	$ ilde{\mathcal{O}}(\min\{d,S\}H^3SA/\epsilon^2)$
	This work	$ ilde{\mathcal{O}}(\min\{d,S\}H^4SA/\epsilon^2)$	$ ilde{\mathcal{O}}(\min\{d,S\}H^4SA/\epsilon^2)$	$ ilde{\mathcal{O}}(\min\{d,S\}H^4SA/\epsilon^2)$
Linear	This work	$ ilde{\mathcal{O}}(d_{lin}^3 H^6/\epsilon^2)$	$ ilde{\mathcal{O}}(d_{lin}^3 H^6/\epsilon^2)$	$ ilde{\mathcal{O}}(d_{lin}^3 H^6/\epsilon^2)$

References

International Conference on Machine Learning (ICML) 2022

[BDL⁺20] Kianté Brantley, Miro Dudik, Thodoris Lykouris, Sobhan Miryoosefi, Max Simchowitz, Aleksandrs Slivkins, and Wen Sun. Constrained episodic reinforcement learning in concave-convex and knapsack settings. In Advances in Neural Information Processing Systems, volume 33, pages 16315–16326. Curran Associates. Inc., 2020.

[WBY20] Jingfeng Wu, Vladimir Braverman, and Lin F Yang. Accommodating picky customers: Regret bound and exploration complexity for multi-objective reinforcement learning. *arXiv preprint arXiv:2011.13034*, 2020.

[YTZS21] Tiancheng Yu, Yi Tian, Jingzhao Zhang, and Suvrit Sra. Provably efficient algorithms for multi-objective competitive rl. *arXiv preprint arXiv:2102.03192*, 2021.

