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Main ideas

find a policy satisfying some (convex) constraints
on the observed average “measurement vector”

Constraint-based RL:
e more natural in many applications

Examples of constraints we allow:

e [previously studied] orthant constraints: bounds on
total wear, probability of bad events (safety), ...

e [Nnew] bound on distance to expert behavior, distance
to uniform distribution (diversity), ...

e bound on reward can be incorporated (as a constraint)

Our game-theoretic approach:

e relies on ability to approximately solve standard RL
e uses any off-the-shelf RL algorithm

e satisfies rigorous theoretical guarantees

Convex feasibility problem

Model: M = (S, A, B, Ps, P>) vector-valued MDP
S states, A actions, G initial distribution
transitions: si+1 ~ Ps(:|si, ai), So~p
m € T1 stationary policy, a; ~ 1(s;)
vector measurements: z; ~ P,(:|s;, a;), z;€RY

Find a policy m € TT such that /ong-term
measurement z(m) lies in a convex target set C

where (for some discount factor y [0, 1))

Z(m) = [E[Z v'z; n]
i=0

We consider mixed policies u € A(TT)
(distributions over finitely many policies in TT):

Z(1) 2 Exmy [2(m)]

Our approach
e Solve a harder problem

in dist(z(u),
urenAl(nm ist(z(u), C)

where dist is Euclidean distance

e Form the game. If C is a cone', then dist(x,C) =
MaxXxen A - X, where A iIs a suitable convex set. So:

min MAaxA -z
UEA(TT) AeA ('u)

e Solve two-person zero-sum game

max min  A-z(u)

AEN ueA(TT)
no-regret learner pest-response

e Key insight: best response (i.e., u-player)
Is standard reinforcement learning!

RL task with scalar reward of ri =—A - z; at each step (

(similar to Abernethy et al., 2011)

Guarantees and further details

Convergence guarantee:

dist(Z(u), C) < min dist(z(w), C) + O(T ~Y?)
HEA(TT)

For feasibility problem: positive (not best) response is enough

positive response: given A, find policy m that achieves a positive
long-term reward in a standard MDP with scalar reward r; = —A - z;.

modified algorithm either reports infeasibility or returns u that con-
verges to C with rate of O(T —1/2).

substantial efficiency improvements:

— only run off-the-shelf RL until the reward positive;
— cache previous results and check if they give positive reward.

Experiments

l 0.05
R 0.04

-0.03

- 0.02

R R R R R R R R L 0.01

R R G R G

T For an arbitrary convex C, we apply a reduction to obtain a similar algorithm
and guarantees.

Our algorithm: ApproPO
(approachability-based policy optimization)

Initialize A, € A arbitrarily
Fort=1,..., T

e compute approximately optimal policy m; for standard
RL with scalarreward r=—A+-2z

e Z; — approximate long-term measurement for m;

e Uupdate Aty1 from A+ based on gradient —z;
(following online gradient descent algorithm)

Return 1 = %Z;l Tt

Left: The Mars rover domain. Middle, Right: Visitation probabili-
ties of ApproPO without and with diversity constraints, respectively.
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Left: Convergence of constraint values (mean and standard devi-
ation across 25 replicates). Right: Each symbol corresponds to a
separate replicate at a given number of samples.

[RCPO baseline] C. Tessler, D. Mankowitz, S. Mannor. Reward Constrained Policy
Optimization. ICLR 2019.




