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Abstract
Finding the minimal structural assumptions that empower sample-efficient learning is one of

the most important research directions in Reinforcement Learning (RL). This paper advances our
understanding of this fundamental question by introducing a new complexity measure—Bellman
Eluder (BE) dimension. We show that the family of RL problems of low BE dimension is re-
markably rich, which subsumes a vast majority of existing tractable RL problems including but not
limited to tabular MDPs, linear MDPs, reactive POMDPs, low Bellman rank problems as well as
low Eluder dimension problems. This paper further designs a new optimization-based algorithm—
GOLF, and reanalyzes a hypothesis elimination-based algorithm—OLIVE (proposed in Jiang et al.
(2017)). We prove that both algorithms learn the near-optimal policies of low BE dimension prob-
lems in a number of samples that is polynomial in all relevant parameters, but independent of the
size of state-action space. Our regret and sample complexity results match or improve the best
existing results for several well-known subclasses of low BE dimension problems.

1. Introduction

Modern Reinforcement Learning (RL) commonly engages practical problems with an enormous
number of states, where function approximation must be deployed to approximate the true value
function using functions from a prespecified function class. Function approximation, especially
based on deep neural networks, lies at the heart of the recent practical successes of RL in domains
such as Atari (Mnih et al., 2013), Go (Silver et al., 2016), robotics (Kober et al., 2013), and dialogue
systems (Li et al., 2016).

Despite its empirical success, RL with function approximation raises a new series of theoretical
challenges when comparing to the classic tabular RL: (1) generalization, to generalize knowledge
from the visited states to the unvisited states due to the enormous state space. (2) limited expressive-
ness, to handle the complicated issues where true value functions or intermediate steps computed
in the algorithm can be functions outside the prespecified function class. (3) exploration, to address
the tradeoff between exploration and exploitation when above challenges are presented.

Consequently, most existing theoretical results on efficient RL with function approximation
rely on relatively strong structural assumptions. For instance, many require that the MDP admits a
linear approximation (Wang et al., 2019; Jin et al., 2020; Zanette et al., 2020a), or that the model
is precisely Linear Quadratic Regulator (LQR) (Anderson and Moore, 2007; Fazel et al., 2018;
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Figure 1: A schematic summarizing relations among families of RL problems

Dean et al., 2019). Most of these structural assumptions rarely hold in practical applications. This
naturally leads to one of the most fundamental questions in RL.

What are the minimal structural assumptions that empower sample-efficient RL?

We advance our understanding of this grand question via the following two steps: (1) identify a
rich class of RL problems (thus with weak structural assumption) that cover many practical appli-
cations of interests; (2) design sample-efficient algorithms that provably learn any RL problem in
this rich class.

The attempts to find weak or minimal structural assumptions that allow statistical learning can
be traced in supervised learning where VC dimension (Vapnik, 2013) or Rademacher complexity
(Bartlett and Mendelson, 2002) is proposed, or in online learning where Littlestone dimension (Lit-
tlestone, 1988) or sequential Rademacher complexity (Rakhlin et al., 2010) is developed.

In the area of reinforcement learning, there are two intriguing lines of recent works that have
made significant progress in this direction. To begin with, Jiang et al. (2017) introduces a generic
complexity notion—Bellman rank, which can be proved small for many RL problems including lin-
ear MDPs (Jin et al., 2020), reactive POMDPs (Krishnamurthy et al., 2016), etc. Jiang et al. (2017)
further propose an hypothesis elimination-based algorithm—OLIVE for sample-efficient learning of
problems with low Bellman rank. On the other hand, recent work by Wang et al. (2020) considers
general function approximation with low Eluder dimension (Russo and Van Roy, 2013), and designs
a UCB-style algorithm with regret guarantee. Noticeably, the set of generalized linear MDPs (Wang
et al., 2019) is a subclass of low Eluder dimension problems, but not low Bellman rank.

In this paper, we make the following three contributions.

• We introduce a new complexity measure for RL—Bellman Eluder (BE) dimension. We prove
that the family of RL problems of low BE dimension is remarkably rich, which subsumes both
low Bellman rank problems and low Eluder dimension problems—two arguably most generic
tractable function classes so far in the literature (see Figure 1).

• We design a new optimization-based algorithm—GOLF, which provably learn the near-optimal
policies of low BE dimension problems in a number of samples that is polynomial in all rel-
evant parameters, but independent of the size of state-action space. Our regret or sample
complexity guarantees match Zanette et al. (2020a) when specified to the linear setting, and
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improve upon Jiang et al. (2017); Wang et al. (2020) in low Bellman rank, and low Eluder
dimension settings respectively.

• We reanalyze the hypothesis elimination-based algorithm—OLIVE proposed in Jiang et al.
(2017). We show it can also learn RL problems with low BE dimension sample-efficiently,
under slightly different assumptions but with worse sample complexity comparing to GOLF.

1.1. Related works

This section reviews prior theoretical works on RL, under Markov Decision Process (MDP) models.
We remark that there has been a long line of research on function approximation in the batch RL

setting (see, e.g., Szepesvári and Munos, 2005; Munos and Szepesvári, 2008; Chen and Jiang, 2019;
Xie and Jiang, 2020). In this setting, agents are provided with exploratory data or simulator, so that
they do not need to explicitly address the challenge in exploration. In this paper, we do not make
such assumption, and attack exploration problem directly. In the following we focus exclusively on
the RL results in the general setting that require exploration.

Tabular RL. Tabular RL concerns MDPs with a small number of states and actions, which has
been thoroughly studied in recent years (see, e.g., Brafman and Tennenholtz, 2002; Jaksch et al.,
2010; Dann and Brunskill, 2015; Agrawal and Jia, 2017; Azar et al., 2017; Zanette and Brunskill,
2019; Jin et al., 2018; Zhang et al., 2020). In the episodic setting with non-stationary dynamics,
the best regret bound Õ(

√
H2|S||A|T ) is achieved by both model-based (Azar et al., 2017) and

model-free (Zhang et al., 2020) algorithms. Moreover, the bound is proved to be minimax-optimal
by Jin et al. (2018). This minimax bound suggests that when the state-action space is enormous, RL
is information-theoretically hard without further structural assumptions.

RL with linear function approximation. A recent line of work studies RL with linear function
approximation (see, e.g., Jin et al., 2020; Wang et al., 2019; Cai et al., 2019; Zanette et al., 2020a,b;
Agarwal et al., 2020; Neu and Pike-Burke, 2020). These papers assume certain completeness condi-
tions, as well as the optimal value function can be well approximated by linear functions. Under one
formulation of linear approximation, the minimax regret bound Õ(d

√
T ) is achieved by algorithm

ELEANOR (Zanette et al., 2020a), where d is the ambient dimension of the feature space.

RL with general function approximation. Beyond the linear setting, there is a flurry line of
research studying RL with general function approximation (see, e.g., Osband and Van Roy, 2014;
Jiang et al., 2017; Sun et al., 2019; Dong et al., 2020; Wang et al., 2020; Yang et al., 2020; Foster
et al., 2020). Among them, Jiang et al. (2017) and Wang et al. (2020) are the closest to our work.

Jiang et al. (2017) proposes a complexity measure named Bellman rank and design an algorithm
OLIVE with sample-efficient PAC guarantee for problems with low Bellman rank. We note that low
Bellman rank is a special case of low BE dimension. When specialized to the low Bellman rank
setting, our sample complexity of OLIVE exactly matches the guarantee in Jiang et al. (2017). Our
result for GOLF requires additional completeness assumption, but achieves better sample complex-
ity.

Wang et al. (2020) proposes a UCB-type algorithm with a regret guarantee under the assumption
that the function class has a low eluder dimension. Again, we will show that low Eluder dimension
is a special case of low BE dimension. Comparing to Wang et al. (2020), our algorithm GOLF works
under weaker completeness assumptions, with a better regret guarantee.
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2. Preliminaries

We consider episodic Markov Decision Process (MDP), denoted byM = (S,A, H,P, r), where S
is the state space, A is the action space, H is the number of steps in each episode, P = {Ph}h∈[H]

is the collection of transition measures with Ph(s′ | s, a) equal to the probability of transiting to
s′ after taking action a at state s at the hth step, and r = {rh}h∈[H] is the collection of reward
functions with rh(s, a) equal to the deterministic reward received after taking action a at state s at
the hth step. 1 Throughout this paper, we assume reward is non-negative, and

∑H
h=1 rh(sh, ah) ≤ 1

for all possible sequence (s1, a1, . . . , sH , aH).
In each episode, the agent starts at a fixed initial state s1. Then, at each step h ∈ [H], the agent

observes its current state sh, takes action ah, receives reward rh(sh, ah), and causes the environment
to transit to sh+1 ∼ Ph(· | sh, ah). Without loss of generality, we assume there is a terminating
state send which the environment will always transit to send at stepH+1, and the episode terminates
when send is reached.

Policy and value functions A (deterministic) policy π of an agent is a collection of H functions
{πh : S → A}Hh=1. We denote V π

h : S → R as the value function at step h for policy π, so
that V π

h (s) gives the expected sum of the remaining rewards received under policy π, starting from
sh = s, till the end of the episode. In symbol,

V π
h (s) := Eπ

[
H∑

h′=h

rh′(sh′ , ah′) | sh = s

]
,

Similarly, we denote Qπh : S ×A → R as the Q-value function at step h for policy π, where

Qπh(s, a) := Eπ

[
H∑

h′=h

rh′(sh′ , ah′) | sh = s, ah = a

]
.

There exists an optimal policy π?, which gives the optimal value function for all states (Put-
erman, 2014), in the sense, V π?

h (s) = supπ V
π
h (s) for all h ∈ [H] and s ∈ S. For notational

simplicity, we abbreviate V π? as V ?. We similarly define the optimal Q-value function as Q?.
Recall that Q? satisfies the Bellman optimality equation:

Q?h(s, a) = (ThQ?h+1)(s, a) := rh(s, a) + Es′∼Ph(·|s,a) max
a′∈A

Q?h+1(s′, a′). (1)

for all (s, a, h) ∈ S ×A× [H]. We also call Th the Bellman operator at step h.

ε-optimality and regret We say a policy π is ε-optimal if V π
1 (s1) ≥ V ?

1 (s1) − ε. Suppose an
agent interacts with the environment for K episodes. Denote by πk the policy the agent follows in
episode k ∈ [K]. The (accumulative) regret is defined as

Reg(K) :=
K∑
k=1

[
V ∗(s1)− V πk(s1)

]
.

The objective of reinforcement learning is to find an ε-optimal policy within a small number of
interactions or achieve sublinear regret.

1. We study deterministic reward functions for notational simplicity. Our results readily generalize to random rewards.
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2.1. Function approximation

In this paper, we consider reinforcement learning with value function approximation. Formally, the
learner is given a function class F = F1 × · · · × FH , where Fh ⊆ S × A → [0, 1] offers a set of
candidate functions to approximate Q?h—the optimal Q-value function at step h. Since no reward is
collected in the (H + 1)th steps, we always set fH+1 = 0.

Reinforcement learning with function approximation in general is extremely challenging with-
out further assumptions (see, e.g., hardness results in Krishnamurthy et al. (2016); Weisz et al.
(2020)). Below, we present two assumptions about function approximation that are commonly
adopted in the literature.

Assumption 1 (Realizability) Q?h ∈ Fh for all h ∈ [H].

Realizability requires the function class is well-specified, i.e. function class Fh in fact contains
the optimal Q-value function Q?h with no approximation error.

Assumption 2 (Completeness) ThFh+1 ⊆ Fh for all h ∈ [H].

Note ThFh+1 is defined as {Thf : f ∈ Fh+1}. Completeness requires the function class F to
be closed under the Bellman operator.

When function class F has finite elements, we can use its cardinality |F| to measure the “size”
of function class F . When we are addressing function classes with infinite elements, we require a
notion similar to cardinality. We use the standard ε-covering number.

Definition 3 (ε-covering number) The ε-covering number of a set V under metric ρ, denoted as
N (V, ε, ρ), is the minimum integer n such that there exists a subset Vo ⊂ V with |Vo| = n, and for
any x ∈ V , there exists y ∈ Vo such that ρ(x, y) ≤ ε.

We refer readers to standard textbooks (see, e.g., Wainwright, 2019) for further properties of
covering number. In this paper, we will always apply the covering number on function class F =
F1 × · · · × FH+1, and use metric ρ(f, g) = maxh ‖fh − gh‖∞. For notational simplicity, we omit
the metric dependence and denote the covering number as NF (ε).

2.2. Eluder dimension

One class of function highly related to this paper is the function class of low Eluder dimension
(Russo and Van Roy, 2013).

Definition 4 (ε-independence between points) Let G be a function class defined onX , and z,x1, x2

,. . .,xn∈ X . We say z is ε-independent of {x1, x2, . . . , xn} with respect to G if there exist g1, g2 ∈ G
such that

√∑n
i=1(g1(xi)− g2(xi))2 ≤ ε, but g1(z)− g2(z) > ε.

Intuitively, z is independent of {x1, x2, . . . , xn} means if that there exist two “certifying” func-
tions g1 and g2, so that their function values are similar at all point {xi}ni=1, but the values are rather
different at z. This independence relation naturally induces the following complexity measure.

Definition 5 (Eluder dimension) Let G be a function class defined on X . The Eluder dimension
dimE(G, ε) is the length of the longest sequence {x1, . . . , xn} ⊂ X such that there exists ε′ ≥ ε
where xi is ε′-independent of {x1, . . . , xi−1} for all i ∈ [n].
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Recall that a vector space has dimension d if and only if d is the length of the longest sequence
of elements {x1, . . . , xd} such that xi is linearly independent of {x1, . . . , xi−1} for all i ∈ [n].
Eluder dimension generalizes the linear independence relation in standard vector space dimension
to capture both nonlinear independence and approximate independence, and thus is more general.

3. Bellman Eluder Dimension

In this section, we introduce our new complexity measure—Bellman Eluder (BE) dimension. As
one of its most important properties, we will show that the class of functions with low BE dimension
contains the two existing most general tractable function classes in RL—functions with low Bellman
rank, and functions with low Eluder dimension (see Figure 1).

We start by developing a new distributional version of the original Eluder dimension proposed
by Russo and Van Roy (2013) (See Section 2.2 for more details).

Definition 6 (ε-independence between distributions) Let G be a function class defined onX , and
ν, µ1, . . . , µn be probability measures over X . We say ν is ε-independent of {µ1, µ2, . . . , µn} with
respect to G if there exists g ∈ G such that

√∑n
i=1(Eµi [g])2 ≤ ε, but |Eν [g]| > ε.

Definition 7 (Distributional Eluder (DE) dimension) Let G be a function class defined onX , and
Π be a family of probability measures over X . The distributional Eluder dimension dimDE(G,Π, ε)
is the length of the longest sequence {ρ1, . . . , ρn} ⊂ Π such that there exists ε′ ≥ ε where ρi is
ε′-independent of {ρ1, . . . , ρi−1} for all i ∈ [n].

Definition 6 and Definition 7 generalize Definition 4 and Definition 5 to the distributional ver-
sion, by inspecting the expected values of function instead of the function values at single points,
and by restricting the candidate distributions to a certain family Π. The main advantage of this gen-
eralization is exactly in the statistical setting, when the estimation of the expected value of function
with respect to certain distribution family can be easier than the estimation of the function at all
single points (which is the case for RL in large state space).

It is clear that standard Eluder dimension is a special case of distribution Eluder dimension,
because when choosing Π = {δx(·)|x ∈ X} where δx(·) is the dirac measure centered at x, then
dimE(G, ε) = dimDE(G − G,Π, ε) where G − G = {g1 − g2 : g1, g2 ∈ G}.

Now we are ready to introduce our key notion in this paper—Bellman Eluder dimension.

Definition 8 (Bellman Eluder (BE) dimension) Let (I−Th)F := {fh−Thfh+1 : f ∈ F} be the
set of Bellman residuals induced by F at step h, and Π = {Πh}Hh=1 be a collection ofH probability
measure families over S ×A. The ε-Bellman Eluder of F with respect to Π is defined as 2

dimBE(F ,Π, ε) := max
h∈[H]

dimDE

(
(I − Th)F ,Πh, ε

)
.

In short, Bellman Eluder dimension is simply the distribution Eluder dimension on the function
class of Bellman residuals, maximizing over all steps. In additional to the function class F and
error ε, the Bellman Eluder dimension also depends on the choice of distribution family Π. For the
purpose of this paper, we focus on the following two specific choices.

2. With a different choice of Bellman residual, we can alternatively define type-II Bellman Eluder dimension, where
similar results can be obtained. For clean presentation, we defer all results of type-II BE dimension to Appendix A.
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1. DF := {DF ,h}h∈[H], where DF ,h denotes the collection of all probability measures over
S × A at the hth step, which can be generated by executing the greedy policy πf induced by
any f ∈ F , i.e., πf,h(·) = argmaxa∈A fh(·, a) for all h ∈ [H].

2. D∆ := {D∆,h}h∈[H], where D∆,h = {δ(s,a)(·)|s ∈ S, a ∈ A}, i.e. the collections of
probability measures that put measure 1 on single state-action pairs.

We say a RL problem has low BE dimension if minΠ∈{DF ,D∆} dimBE(F ,Π, ε) is small.

3.1. Relations with existing tractable function classes in RL

Known tractable problem classes in RL include but not limited to tabular MDPs, linear MDPs (Jin
et al., 2020), linear quadratic regulators (Anderson and Moore, 2007), generalized linear MDPs
(Wang et al., 2019), reactive POMDPs (Krishnamurthy et al., 2016), reactive PSRs (Singh et al.,
2012; Jiang et al., 2017). There are two existing generic tractable problem classes that jointly
contain all the examples mentioned above: the set of RL problems with low Bellman rank, and the
set of RL problems with low Eluder dimension. However, for these two generic sets, one does not
contain the other.

In this section, we will show that our new class of RL problems with low BE dimension in
fact contains both low Bellman rank problems and low Eluder dimension problems (see Figure 1).
That is, our new problem class covers almost all existing tractable RL problems, and, to our best
knowledge, is the most generic tractable function class so far.

Relation with low Bellman rank The seminar paper by Jiang et al. (2017) proposes the complex-
ity measure—Bellman rank, and shows that a majority of RL examples mentioned above have low
Bellman rank. They also propose a hypothesis elimination based algorithm—OLIVE, that learns
any low Bellman rank problem within polynomial samples. Formally,

Definition 9 (Bellman rank) The Bellman rank is the minimum integer d so that there exists φh :
F → Rd and ψh : F → Rd for each h ∈ [H], such that for any f, f ′ ∈ F , the average Bellman
error3

E(f, πf ′ , h) := Eπf ′ [(fh − Thfh+1)(sh, ah)] = 〈φh(f), ψh(f ′)〉,

where ‖φh(f)‖2 · ‖ψh(f)‖2 ≤ ζ, and ζ is the normalization parameter.

Recall that we use πf to denote the greedy policy induced by value function f . Intuitively, a
problem with Bellman rank says its average Bellman error can be decomposed as the inner product
of two d-dimensional vectors, where one vector depends on the roll-in distribution π′f , while the
other vector depends on the value function f . In a high level, it claims that the average Bellman
error has a linear inner product structure.

Proposition 10 (low Bellman rank ⊂ low BE dimension) If an MDP with function class F has
Bellman rank d with normalization parameter ζ, then

dimBE(F ,DF , ε) ≤ O(1 + d log(1 + ζ/ε)).

3. The definition presented here is slightly different from the original version in Jiang et al. (2017). In this paper, we
denote the original version as type-II Bellman rank. We can also show that low type-II Bellman rank ⊂ low type-II
BE dimension, and low type-II BE dimension problems can be sample-efficiently learned (see Appendix A).
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Proposition 10 claims that problems with low Bellman rank also have low BE dimension, with a
small multiplicative factor that is only logarithmic in ζ and ε−1.

Next, we show that the set of low BE dimension problems is a strictly larger than the set of
low Bellman rank problems. This is intuitively because, as a feature of Eluder dimension, problems
with low BE dimension further allow the average Bellman error to have certain nonlinear structure.

Proposition 11 (low BE dimension 6⊂ low Bellman rank ) For any m ∈ N+, there exist an MDP
and a function class F so that for all ε > 0, dimBE(F ,DF , ε) ≤ 9, but the Bellman rank is at least
m.

Relation with low Eluder dimension Wang et al. (2020) study the setting where the function
class F has low Eluder dimension, which includes generalized linear functions. They prove that,
when the completeness assumption is satisfied,4 low Eluder dimension problems can be efficiently
learned in polynomial samples.

Proposition 12 (low Eluder dimension ⊂ low BE dimension) Assume F satisfies completeness
(Assumption 2). Then for all ε > 0,

dimBE

(
F ,D∆, ε

)
≤ max

h∈[H]
dimE(Fh, ε).

Proposition 12 asserts that problems with low Eluder dimension also have low BE dimension, which
is a natural consequence of completeness and the fact that Eluder dimension is a special case of
distributional Eluder dimension.

Finally, similar to proposition 11, we can also show that the set of low BE dimension problems
is a strictly larger than the set of low Eluder dimension problems.

Proposition 13 (low BE dimension 6⊂ low Eluder dimension) For any m ∈ N+, there exist an
MDP and a function classF so that for all ε ∈ (0, 1], dimBE(F ,D∆, ε) ≤ 9, but minh∈[H] dimE(Fh, ε)
is at least m.

4. Algorithm GOLF

Section 3 defines a new class of RL problems with low BE dimension, and shows that the new
class is rich, containing almost all the existing known tractable RL problems so far. In this section,
we propose a new simple optimization-based algorithm—Global Optimism based on Local Fitting
(GOLF). We prove that, low BE dimension problems are indeed tractable, i.e., GOLF finds the
near-optimal policies of these problems within a polynomial number of samples.

The pseudocode of GOLF is given in Algorithm 1. GOLF initializes datasets {Dh}Hh=1 to be
empty sets, and confidence set B0 to be F . Then, in each episode, GOLF performs two main steps:

• Line 3 (Optimistic planning): compute the most optimistic value function fk from the confi-
dence set Bk−1 constructed in the last episode5 , and choose πk to be its greedy policy.

• Line 4-6 (Execute the policy and update the confidence set): execute policy πk for one
episode, collect data, and update the confidence set using the new data.

4. Wang et al. (2020) assume for any function g (not necessarily inF), T g ∈ F , which is stronger than the completeness
assumption presented in this paper (Assumption 2).

5. We remark that in general, the optimization problem in Line 3 of GOLF can not be solved computationally efficiently.

8
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Algorithm 1 GOLF (F ,K, β) — Global Optimism based on Local Fitting

1: Initialize: D1, . . . ,DH ← ∅, B0 ← F .
2: for episode k from 1 to K do
3: Choose policy πk = πfk , where fk = argmaxf∈Bk−1 f(s1, πf (s1)).
4: Collect a trajectory (s1, a1, r1, . . . , sH , aH , rH , sH+1) by following πk.
5: Augment Dh = Dh ∪ {(sh, ah, rh, sh+1)} for all h ∈ [H].
6: Update

Bk =

{
f ∈ F : LDh(fh, fh+1) ≤ inf

g∈Fh
LDh(g, fh+1) + β for all h ∈ [H]

}
,

where LDh(ξh, ζh+1) =
∑

(s,a,r,s′)∈Dh

[ξh(s, a)− r −max
a′∈A

ζh+1(s′, a′)]2. (2)

7: Output πout sampled uniformly at random from {πk}Kk=1.

At the heart of GOLF is the way we construct the confidence set Bk. For each h ∈ [H], GOLF

maintains a local regression constraint using the collected transition data Dh at this step

LDh(fh, fh+1) ≤ inf
g∈Fh

LDh(g, fh+1) + β, (3)

where β is a confidence parameter, and LDh is the squared loss defined in (2), which can be viewed
as a proxy to the squared Bellman error at step h. Classic algorithm—Fitted Q-Iteration (FQI)
(Szepesvári, 2010) simply updates fh ← argming∈Fh LDh(g, fh+1). Our constraint (3) can be
viewed as a relaxed version of this update, which allows fh to be not only the minimizer of the loss
LDh(·, fh+1), but also any function whose loss is only slightly larger then the optimal loss.

4.1. Theoretical guarantees

Now, we present the theoretical guarantees for GOLF.

Theorem 14 (Regret of GOLF) Under Assumption 1, 2, there exists an absolute constant c such
that for any δ ∈ (0, 1], K ∈ N, if we choose parameter β = c log[NF (1/K) · KH/δ] in GOLF,
then with probability at least 1 − δ, for all k ∈ [K], we have Reg(k) ≤ O(H

√
dkβ), where

d = minΠ∈{D∆,DF} dimBE

(
F ,Π, 1/

√
K
)

is the BE dimension.

Theorem 14 asserts that, under the realizability and completeness assumptions, the general class
of RL problems with low BE dimension is indeed tractable: there exists an algorithm (GOLF) that
can achieve

√
K regret, whose multiplicative factor depends only polynomially on the horizon of

MDP H , the BE dimension d, and the log covering number of the function class. Most importantly,
the regret is independent of the number of the states, which is crucial for dealing with practical RL
problems with function approximation, where the state space is typically exponentially large.

We remark that when function class F has a finite number of elements, the covering number
is upper bounded by its cardinality |F|. For a wide range of function classes in practice, the log
ε′-covering number has only logarithmic dependence on ε′. Informally, we denote the log covering
number as logNF and omit its ε′ dependency for clean presentation. Theorem 14 claims that the
regret scales as Õ(H

√
dK logNF ), where Õ(·) omits absolute constant and logarithmic terms.6

6. We will not omit logNF in Õ(·) notation since for many function classes, logNF is not small. For instance, for
linear function class, logNF = Õ(d̃) where d̃ is ambient dimension.
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By standard online-to-batch argument, we also derive the sample complexity of GOLF.

Corollary 15 (Sample Complexity of GOLF) Under Assumption 1, 2, there exists an absolute
constant c such that for any ε ∈ (0, 1], if we choose β = c log[NF (ε2/(dH2)) · HK] in GOLF,
then the output policy πout is O(ε)-optimal with probability at least 1/2, if K ≥ Ω((H2d/ε2) ·
log[NF (ε2/(dH2)) ·Hd/ε]), where d = minΠ∈{D∆,DF} dimBE

(
F ,Π, ε/H

)
is the BE dimension.

Corollary 15 claims that Õ(H2d log(NF )/ε2) samples are enough for GOLF to learn a near-
optimal policy of any low BE dimension problem. Our sample complexity scales linear in both the
BE dimension d, and the log covering number log(NF ).

To showcase the sharpness of our results, we compare them to the previous results when re-
stricted to the corresponding settings. (1) For linear function class with dlin ambient dimension, we
have BE dimension d = Õ(dlin) and log(NF ) = Õ(dlin). Our regret bound becomes Õ(Hdlin

√
K)

which matches the best known result (Zanette et al., 2020a) up to logarithmic factors; (2) For func-
tion class with low Eluder dimension (Wang et al., 2020), our results hold under weaker complete-
ness assumptions. Our regret scales with

√
dE in terms of dependency on Eluder dimension dE,

which improves the linear dE scaling in the regret of Wang et al. (2020); (3) Finally, for low Bell-
man rank problems, our sample complexity scales linearly with Bellman rank, which improves upon
the quadratic dependence in Jiang et al. (2017). We remark that all results mentioned above assume
(approximate) realizability. All except Jiang et al. (2017) assume (approximate) completeness.

4.2. Key ideas in proving Theorem 14

In this subsection, we present a brief sketch for proving the regret bound of GOLF. We defer all
the proof details to Appendix C. For simplicity, we only discusses the case of choosing DF as the
distribution family Π in the definition of Bellman Eluder dimension (Definition 8). The proof for
using D∆ as distribution family follows from similar arguments.

Our proof strategy has three main steps.

Step 1: Prove optimism. We firstly show that, with high probability, the optimal value function
Q? indeed lies in the confidence set Bk for all k ∈ [K] (Lemma 25 in Appendix C.1), which is
a natural consequence of martingale concentration and the specific form of the confidence set we
constructed. Because of Q? ∈ Bk, the optimistic planning step (Line 3) in GOLF guarantees that
V ?

1 (s1) ≤ maxa f
k
1 (s1, a) for every episode k. This optimism allows the following upper bound on

regret

Reg(K) ≤
K∑
k=1

(
max
a

fk1 (s1, a)− V πk

1 (s1)
)

=

H∑
h=1

K∑
k=1

Eπk [(fkh − T fkh+1)(sh, ah)], (4)

where the right equality follows from the standard policy loss decomposition (see, e.g., Lemma 1
in Jiang et al. (2017)), and Eπ denotes the expectation taken over the sequence (s1, a1, . . . , sH , aH)
when executing policy π.

Step 2: Utilize the sharpness of our constraint set. Recall that our construction of the confidence
set in Line 6 of GOLF forces fk computed in episode k to have a small loss LDh , which is a proxy
for empirical squared Bellman error under data Dh. Since data in Dh in episode k are collected by

10
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Algorithm 2 OLIVE (F , ζact, ζelim, nact, nelim)

1: Initialize: B0 ← F , Dh ← ∅ for all h, k.
2: for phase k = 1, 2, . . . do
3: Choose policy πk = πfk , where fk = argmaxf∈Bk−1 f(s1, πf (s1)).
4: Execute πk for nact episodes and refresh Dh to include the fresh (sh, ah, rh, sh+1) tuples.
5: Estimate Ê(fk, πk, h) for all h ∈ [H], where

Ê(g, π, h) =
1

|Dh|
∑

(s,a,r,s′)∈Dh

(
gh(s, a)− r −max

a′∈A
gh+1(s′, a′)

)
.

6: if
∑H

h=1 Ê(fk, πk, h) ≤ Hζact then
7: Terminate and output πk.
8: Pick any t ∈ [H] for which Ê(fk, πk, t) ≥ ζact.
9: Execute πk for nelim episodes and refresh Dh to include the fresh (sh, ah, rh, sh+1) tuples.

10: Estimate Ê(f, πk, t) for all f ∈ F .
11: Update Bk =

{
f ∈ Bk−1 :

∣∣∣Ê(f, πk, t)
∣∣∣ ≤ ζelim

}
.

executing each πi for one episode for all i < k, by standard martingale concentration argument and
the completeness assumption, we can show that with high probability (Lemma 24 in Appendix C.1)

k−1∑
i=1

Eπi [(fkh − T fkh+1)(sh, ah)]2≤O(β), for all (k, h) ∈ [K]× [H]. (5)

Step 3: Establish relations between (4) and (5). So far, we want to upper-bound (4), while we
know (5). We note that the RHS of (4) is very similar to the LHS of (5), except that the latter is the
squared Bellman error, and the expectation is taken under previous policy πi for i < k. To establish
the connection between these two, it turns out that we need the Bellman Eluder dimension to be
small. Concretely, we have the following lemma.

Lemma 16 Given a function class G defined on X with |g(x)| ≤ 1 for all (g, x) ∈ G × X , and
a family of probability measures Π over X . Suppose sequence {gk}Kk=1 ⊂ G and {µk}Kk=1 ⊂ Π

satisfy that for all k ∈ [K],
∑k−1

i=1 (Eµi [gk])2 ≤ β. Then for all k ∈ [K],
∑k

i=1 |Eµi [gi]| ≤
O(
√

dimDE(G,Π, 1/k)βk).

Lemma 16 is a simplification of Lemma 26 in Appendix C, which is a modification of Lemma 2 in
Russo and Van Roy (2013). Intuitively, Lemma 16 can be viewed as an analogue of the pigeon-hole
principles for DE dimension. Choose G to be the function class of Bellman residuals, and µk to be
the distribution under policy πk, we finish the proof.

5. Algorithm OLIVE

In this section, we analyze the OLIVE algorithm proposed in Jiang et al. (2017), which is based
on hypothesis elimination. We prove that, despite OLIVE was originally proposed for solving low
Bellman rank problems, it naturally learns the RL problems with low BE dimension as well.

The pseudocode of OLIVE is presented in Algorithm 2, in each phase, the algorithm contains
the following three main components.

11
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• Line 3 (Optimistic planning): compute the most optimistic value function fk from the candi-
date set Bk−1, and choose πk to be its greedy policy.

• Line 4-7 (Estimate Bellman error): estimate the Bellman error of fk under πk; output πk if
the estimated error is small, and otherwise activate the elimination procedure.

• Line 8-11 (Eliminate functions with large Bellman error): pick a step t ∈ [H] whose estimated
Bellman error exceeds the activation threshold ζact; eliminate all functions in the candidate
set whose Bellman error at step t exceeds the elimination threshold ζelim.

We comment that OLIVE is computationally inefficient in general because implementing the opti-
mistic planning part requires solving an NP-hard problem in the worst case (Dann et al., 2018).

5.1. Theoretical guarantees

Now, we are ready to present the theoretical guarantee for OLIVE.

Theorem 17 (OLIVE) Under Assumption 1, there exists absolute constant c such that if we choose

ζact =
2ε

H
, ζelim =

ε

2H
√
d
, nact =

H2ι

ε2
, and nelim =

H2d log(NF (ζelim/8)) · ι
ε2

where d = dimBE(F ,DF , ε/H) and ι = c log(Hd/δε), then with probability at least 1 − δ,
Algorithm 2 will output an O(ε)-optimal policy using at most O(H3d2 log[NF (ζelim/8)] · ι/ε2)
episodes.

Theorem 17 claims that OLIVE learns an ε-optimal policy of an MDP with BE dimension d
within Õ(H3d2 log(NF )/ε2) episodes. When specialized to low Bellman rank problems, our sam-
ple complexity has the same quadratic dependence on Bellman rank d as in Jiang et al. (2017).

Comparing to GOLF, the major advantage of OLIVE is that OLIVE does not require complete-
ness assumption (Assumption 2) to work. Nevertheless, OLIVE only learns the RL problems that
have low BE dimension with respect to the distribution familyDF , notD∆. The sample complexity
of OLIVE is also worse than the sample complexity GOLF (as presented in Corollary 15).

Finally, we comment that interpreting OLIVE through the lens of BE dimension, makes the
proof of Theorem 17 surprisingly natural, which follows from the definition of BE dimension along
with some standard concentration arguments.

5.2. Interpret OLIVE with BE dimension

In this subsection, we explain the key idea behind OLIVE through the lens of BE dimension.
To provide a clean high-level view, let us assume all estimates are accurate for now, and the

activation threshold ζact and the elimination threshold ζelim satisfy ζelim
√
d ≤ ζact, where d =

dimBE

(
F ,DF , ζact

)
. Since E(Q?, π, h) ≡ 0 for any (π, h), Q? is always in the candidate set.

Therefore, the optimistic planning (Line 3) guarantees maxa f
k
1 (s1, a) ≥ V ?

1 (s1).
If the Bellman error summation is small (Line 6) i.e.,

∑H
h=1 E(fk, πk, h) ≤ Hζact, then by

simple policy loss decomposition (e.g., Lemma 1 in Jiang et al. (2017)) and the optimism of fk,
πk is Hζact-optimal. Otherwise, the elimination procedure is activated at some step t satisfying
E(fk, πk, t) ≥ ζact and all f with E(f, πk, t) ≥ ζelim get eliminated. The key observation here is:

12
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If the elimination procedure is activated at step h in phase k1 < . . . < km, then the roll-
in distribution of πk1 , . . . , πkm at step h is an ζact-independent sequence with respect to
the class of Bellman residual (I − Th)F at step h. Therefore, we should have m ≤ d.

For the sake of contradiction, assume m ≥ d+ 1. Let us prove πk1 , . . . , πkd+1 is a ζact-independent
sequence. Firstly, for any j ∈ [d+ 1], since fkj is not eliminated in phase k1, . . . , kj−1, we have√√√√j−1∑

i=1

(
E(fkj , πki , h)

)2 ≤ √d× ζelim ≤ ζact.

Besides, because the elimination procedure is activated at step h in phase kj , we have E(fkj , πkj , h) ≥
ζact. By Definition 6, we obtain that the roll-in distribution of πkj at step h is ζact-independent of
those of πk1 , . . . , πkj−1 for j ∈ [d + 1], which contradicts the definition d = dimBE

(
F ,DF , ζact

)
.

As a result, the elimination procedure can happen at most d times for each h ∈ [H], which means
the algorithm should terminate within dH + 1 phases and output an Hζact-optimal policy.

6. Conclusion

In this paper, we propose a new complexity measure—Bellman Eluder (BE) dimension for rein-
forcement learning with function approximation. Our new complexity measure identifies a new rich
class of RL problems that subsume a majority of existing tractable problem classes in RL. We de-
sign a new optimization-based algorithm—GOLF, and provide a new analysis for algorithm OLIVE.
Both algorithms show that the new rich class of RL problems we identified can be in fact learned
within a polynomial number of samples. We hope our results shed light on the future research in
finding the minimal structural assumptions that allow sample-efficient reinforcement learning.
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Appendix A. Type-II BE Dimension

The definition of Bellman rank, mentioned in Proposition 10 and Definiton 9, is slightly different
from the original definition introduced by Jiang et al. (2017). We denote the former by Type-I and
the latter (the original definition) by Type-II. In this section we introduce Type-II BE Dimension as
well as Type-II variants of GOLF and OLIVE. We show that similar results can still be obtained for
Type-II variants.

Definition 18 (Type-II Bellman rank) The Type-II Bellman rank is the minimum integer d so that
there exists φh : F → Rd and ψh : F → Rd for each h ∈ [H], such that for any f, f ′ ∈ F , the
average Type-II Bellman error

EII(f, πf ′ , h) := E[(fh − Thfh+1)(sh, ah) | sh ∼ πf ′ , ah ∼ πf ] = 〈φh(f), ψh(f ′)〉,

where ‖φh(f)‖2 · ‖ψh(f)‖2 ≤ ζ, and ζ is the normalization parameter.

The only difference between these two definitions lies in the sampling of ah. In Type-I definition
we have ah ∼ πf ′ , however in Type-II definition we have ah ∼ πf instead. It is worth mention-
ing that the Type-I and Type-II bellman error coincide whenever f = f ′; namely, E(f, πf , h) =
EII(f, πf , h) for all f ∈ F .

We can similarly define the Type-II variant of BE Dimension. At a high level, Type-II BE di-
mension dimBEII

(F ,Π, ε) measures the complexity of finding a function inF such that its expected
Bellman error under any state distribution in Π is smaller than ε.

Definition 19 (Type-II BE dimension) Let (I−Th)VF ⊆ S → R be the state-wise Bellman resid-
ual class of F at step h which is defined as

(I − Th)VF := {s 7→ (fh − Thfh+1)(s, πfh(s)) : f ∈ F}.

Let Π = {Πh}Hh=1 be a collection of H probability measure families over S. The Type-II ε-BE
dimension of F with respect to Π is defined as

dimBEII
(F ,Π, ε) := max

h∈[H]
dimDE

(
(I − Th)VF ,Πh, ε

)
.

Relation with low Type-II Bellman rank Denote by DF ,h the collection of all probability mea-
sures over S at the hth step, which can be generated by rolling in with a greedy policy πf with
f ∈ F . Similar to Proposition 10, the following proposition claims that the BE dimension of F
with respect to DF := {DF ,h}h∈[H] is always upper bounded by its Bellman rank up to some
logarithmic factor.

Proposition 20 (low Type-II Bellman rank) If an MDP with function class F has Type-II Bell-
man rank d with normalization parameter ζ, then

dimBEII
(F ,DF , ε) ≤ O(1 + d log(1 + ζ/ε)).

The proof of Proposition 20 is almost the same as that of Proposition 10 in Appendix B.1. We
omit it here since the only modification is to replace Type-I Bellman rank with its Type-II variant
wherever it’s used.
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Algorithm 3 Type-II OLIVE (F , ζact, ζelim, nact, nelim)

1: Initialize: B0 ← F , Dh ← ∅ for all h, k.
2: for phase k = 1, 2, . . . do
3: Choose policy πk = πfk , where fk = argmaxf∈Bk−1 f(s1, πf (s1)).
4: Execute πk for nact episodes and refresh Dh to include the fresh (sh, ah, rh, sh+1) tuples.
5: Estimate ẼII(f

k, πk, h) for all h ∈ [H], where

ẼII(g, π
k, h) =

1

|Dh|
∑

(s,a,r,s′)∈Dh

(
gh(s, a)− r −max

a′∈A
gh+1(s′, a′)

)
.

6: if
∑H

h=1 ẼII(f
k, πk, h) ≤ Hζact then

7: Terminate and output πk.
8: Pick any t ∈ [H] for which ẼII(f

k, πk, t) > ζact.
9: Collect nelim episodes by executing πk for step 1, . . . , t − 1 and picking action uniform at

random for step t. Refresh Dh to include the fresh (sh, ah, rh, sh+1) tuples.
10: Estimate ÊII(f, π

k, t) for all f ∈ F , where

ÊII(g, π
k, h) =

1

|Dh|
∑

(s,a,r,s′)∈Dh

1[a = πg(s)]

1/|A|

(
gh(s, a)− r −max

a′∈A
gh+1(s′, a′)

)
.

11: Update Bk =
{
f ∈ Bk−1 :

∣∣∣ÊII(f, π
k, t)

∣∣∣ ≤ ζelim

}
.

A.1. Algorithm Type-II OLIVE

In this section, we describe the original OLIVE (i.e., Type-II OLIVE) proposed by Jiang et al. (2017),
and its theoretical guarantee in terms of Type-II BE dimension.

The pseudocode is provided in Algorithm 3. Its only difference from Algorithm 2 is Line 9-10:
note that Type-II Bellman rank needs the action at step t to be greedy with respect to the function
f instead of being picked by the roll-in policy πk, so we choose action at uniformly at random and
use the importance-weighted estimator to estimate the Bellman error for each f .

We have the following similar theoretical guarantee for Algorithm 3. Its proof is almost the
same as that of Theorem 17 and can be found in Appendix E.1.

Theorem 21 (Type-II OLIVE) Assume realizability (Assumption 1) holds and F is finite. There
exists absolute constant c such that if we choose

ζact =
2ε

H
, ζelim =

ε

2H
√
d
, nact =

H2ι

ε2
, and nelim =

H2d|A| log(|F|) · ι
ε2

where d = dimBEII

(
F ,DF , ε/H

)
and ι = c log[Hd|A|/δε], then with probability at least 1 − δ,

Algorithm 3 will output anO(ε)-optimal policy using at mostO(H3d2|A| log(|F|) · ι/ε2) episodes.

For problems with Bellman rank d and finite function class F , Theorem 21 together with Proposi-
tion 20 guarantees Õ(H3d2|A| log(|F|)/ε2) samples suffice for finding an ε-optimal policy, which
matches the result in Jiang et al. (2017). For function class F of infinite cardinality but with fi-
nite covering number, we can first compute an O(ζelim)-cover of F , which we denote as Zρ, and
then run Algorithm 3 on Zρ. By following almost the same arguments in the proof of Theorem 21
(the only difference is to replace Q? by its proxy in Zρ), we can show Algorithm 3 will output an
O(ε)-optimal policy using at most Ω(H3d2|A| log(Nt)/ε2) episodes where N = NF (O(ζelim)).
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Algorithm 4 Type-II GOLF (F ,K, β)

1: Initialize: D1, . . . ,DH ← ∅, B0 ← F .
2: for epoch k from 1 to K do
3: Choose policy πk = πfk , where fk = argmaxf∈Bk−1 f(s1, πf (s1)).
4: for step h from 1 to H do
5: Collect a tuple (sh, ah, rh, sh+1) by executing πk at step 1, . . . , h − 1 and taking action

uniformly at random at step h.
6: Augment Dh = Dh ∪ {(sh, ah, rh, sh+1)} for all h ∈ [H].
7: Update

Bk =

{
f ∈ F : LDh(fh, fh+1) ≤ inf

g∈Fh
LDh(g, fh+1) + β for all h ∈ [H]

}
,

where LDh(ξh, ζh+1) =
∑

(s,a,r,s′)∈Dh

[ξh(s, a)− r −max
a′∈A

ζh+1(s′, a′)]2.

8: Output πout sampled uniformly at random from {πk}Kk=1.

A.2. Algorithm Type-II GOLF

In this section we describe the Type-II variant of GOLF. The pseudocode is provided in Algorithm 4.
Its only difference from the Type-I analogue is in Line 5: for each h ∈ [H], we roll in with policy
πk to sample sh, and then instead of continuing following πk we take random action at step h.

Now we present the theoretical guarantee for Algorithm 4. Its proof is almost the same as that
of Corollary 15 and can be found in appendix E.2.

Theorem 22 (Type-II GOLF) Assume realizability (Assumption 1) and completeness (Assumption
2) hold. There exists an absolute constant c1, c2 such that for any given ε > 0, if we choose
d = minΠ∈{D∆,DF} dimBEII

(
F ,Π, εH

)
, K = c1H

2d|A| log(Hd|A|NF ( ε2

d|A|H2 )/ε)/ε2 and β =

c1 log[KHNF ( ε2

d|A|H2 )], then with probability at least 0.99, πout is c2ε-optimal.

Compared with Theorem 21 (type-II OLIVE), Theorem 22 (type-II GOLF) has the following two
advantages.

• The sample complexity in Theorem 22 depends linearly on the type-II BE-dimension while
the dependence in Theorem 21 is quadratic.

• Theorem 22 applies to RL problems of finite type-II BE dimension with respect to either DF
or D∆. In comparison, Theorem 21 provides no guarantee for the D∆ case.

Appendix B. Proof for Section 3

In this section, we provide the formal proof for the results stated in Section 3.

B.1. Proof of Proposition 10

The proof is basically the same as that of Example 3 in Russo and Van Roy (2013) with minor
modification.
Proof Without loss of generality, assume max{‖φh(f)‖2, ‖ψh(f)‖2} ≤

√
ζ, otherwise we can

satisfy this assumption by rescaling the feature mappings. Assume there exists h ∈ [H] such
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that dimDE((I − Th)F ,DF ,h, ε) ≥ m. Let µ1, . . . , µm ∈ DF ,h be a an ε-independent sequence
with respect to (I − Th)F . By Definition 6, there exists f1, . . . , fm such that for all i ∈ [m],√∑i−1

t=1(Eµt [f ih − Thf ih+1])2 ≤ ε and |Eµi [f ih − Thf ih+1]| > ε. By the definition of Bellman rank,

this is equivalent to: for all i ∈ [m],
√∑i−1

t=1(〈φh(f i), ψh(f t)〉)2 ≤ ε and |〈φh(f i), ψh(f i)〉| > ε.

For notational simplicity, define xi = φh(f i), zi = ψh(f i) and Vi =
∑i−1

t=1 ztz
>
t + ε2

ζ · I. The
previous argument directly implies: for all i ∈ [m], ‖xi‖Vi ≤

√
2ε and ‖xi‖Vi · ‖zi‖V−1

i
> ε.

Therefore, we have ‖zi‖V−1
i
≥ 1√

2
.

By the matrix determinant lemma,

det[Vm] = det[Vm−1](1+‖zm‖2V−1
m

) ≥ 3

2
det[Vm−1] ≥ . . . ≥ det[

ε2

ζ
·I](3

2
)m−1 = (

ε2

ζ
)d(

3

2
)m−1.

On the other hand,

det[Vm] ≤ (
trace[Vm]

d
)d ≤ (

ζ(m− 1)

d
+
ε2

ζ
)d.

Therefore, we obtain

(
3

2
)m−1 ≤ (

ζ2(m− 1)

dε2
+ 1)d.

Take logarithm on both sides,

m ≤ 4

[
1 + d log(

ζ2(m− 1)

dε2
+ 1)

]
,

which, by simple calculation, implies

m ≤ O
(

1 + d log(
ζ2

ε2
+ 1)

)
.

B.2. Proof of Proposition 11

Proof Without loss of generality, assumem is even. Let x1, . . . , xm ∈ [0, 1
m ] bemmutually distinct

numbers. Define yi =
√

1
m2 − x2

i . Consider the following linear bandits (|S| = H = 1) problem.

• The action set A = {ai = (1, xi, yi) : i ∈ [m]}.

• The function set F1 = {fθi(a) = (〈a, θi〉)m : θi = (1, xi, yi), i ∈ [m]}.

• The reward function is always zero, i.e., r ≡ 0.

Bellman rank First, note that the Bellman error E(fθ, πfθ′ , h) is simply (〈θ, θ′〉)m because (a)
T1F2 = {r} (recall WLOG, we assume FH+1 = {0}), (b) r ≡ 0, and (c) the greedy policy
induced by fθ′ always picks action θ′. As a result, we only need to show the m by m matrix
E := (ΘΘ>)�m ∈ Rm×m has rank m, where Θ = [θ1; θ2; . . . ; θm] and �m represents entry-wise
power of m.
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Define zi := θi ⊗ · · · ⊗ θi︸ ︷︷ ︸
m times

∈ R1×3m and Z = [z1; . . . ; zm] ∈ Rm×m, where ⊗ denotes Kro-

necker product. It is direct to see E = ZZ>. Therefore, it suffices to show Z has rank m. Note that
Z includes V = [v1; . . . ; vm] as a submatrix, where vi = [C0

m1, C1
mxi, C

2
mx

2
i , . . . , C

m
mx

m
i ]. Ob-

serve that V is essentially a rescaled Vandermonde matrix, so its rank is equal to m, which implies
Z is also rank-m.

BE dimension First, note in this setting DF ,1 is simply the collection of all Dirac distributions
over A, and (I − T1)F equals to F1 (because F2 = {0} and r ≡ 0). So it suffices to show
dimDE(F1,D∆, ε) ≤ 9.

Assume dimDE(F1,D∆, ε) = k. Then there exist q1, . . . , qk ∈ A and w1, . . . , wk ∈ A such

that for all i ∈ [k],
√∑i−1

t=1(〈qi, wt〉)2m ≤ ε and |〈qt, wt〉|m > ε. By simple calculation, we have
q>i wj ∈ [1, 1 + 1

m ] for all i, j ∈ [m]. Therefore, if ε > e, then k = 0 because |〈qt, wt〉|m ≤

(1 + 1
m)m < e; if ε ≤ e, then k < 10 because

√
k − 1 ≤

√∑k−1
t=1 (〈qi, wk〉)2m ≤ ε.

Remark 23 In this example, Q? ≡ 0 is not in F . However, it is direct to see adding Q? ≡ 0 into F
will not decrease the Bellman rank and will not increase the BE dimension.

B.3. Proof of Proposition 12

Proof Assume δz1 , . . . , δzm is an ε-independent sequence of distributions with respect to (I−Th)F ,
where δzi ∈ D∆. By Definition 6, there exist functions f1, . . . , fm ∈ F such that for all i ∈ [m], we

have |(f ih − Thf ih+1)(zi)| > ε and
√∑i−1

t=1 |(f ih − Thf ih+1)(zt)|2 ≤ ε. Define gih = Thf ih+1. Note

that gih ∈ Fh because ThFh+1 ⊂ Fh. Therefore, we have for all i ∈ [m], |(f ih − gih)(zi)| > ε and√∑i−1
t=1 |(f ih − gih)(zt)|2 ≤ ε with f ih, g

i
h ∈ Fh. By Definition 4 and 5, this implies dimE(Fh, ε) ≥

m, which completes the proof.

B.4. Proof of Proposition 13

Proof For any m ∈ N+, denote by e1, . . . , em the basis vectors in Rm, and consider the following
linear bandits (|S| = H = 1) problem.

• The action set A = {ai = (1; ei) ∈ Rm+1 : i ∈ [m]}.

• The function set F1 = {fθi(a) = a>θi : θi = (1; ei), i ∈ [m]}.

• The reward function is always zero, i.e., r ≡ 0.

Eluder dimension For any ε ∈ (0, 1], a1, . . . , am−1 is an ε-independent sequence of points be-
cause: (a) for any t ∈ [m − 1],

∑t−1
i=1(fθt(ai) − fθt+1(ai))

2 = 0; (b) for any t ∈ [m − 1],
fθt(at)− fθt+1(at) = 1 ≥ ε. Therefore, minh∈[H] dimE(Fh, ε) = dimE(F1, ε) ≥ m− 1.
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BE dimension First, note in this setting (I − T1)F is simply F1 (because F2 = {0} and r ≡ 0).
So it suffices to show dimDE(F1,D∆, ε) ≤ 5.

Assume dimDE(F1,D∆, ε) = k. Then there exist q1, . . . , qk ∈ A and w1, . . . , wk ∈ A such

that for all t ∈ [k],
√∑t−1

i=1(〈qt, wi〉)2 ≤ ε and |〈qt, wt〉| > ε. By simple calculation, we have
q>i wj ∈ [1, 2] for all i, j ∈ [k]. Therefore, if ε > 2, then k = 0 because |〈qt, wt〉| ≤ 2; if ε ≤ 2,

then k ≤ 5 because
√
k − 1 ≤

√∑k−1
i=1 (〈qk, wi〉)2 ≤ ε.

Appendix C. Proof for Section 4

In this section, we provide the formal proof for the results stated in Section 4.

C.1. Proof of Theorem 14

We start the analysis with the following two lemmas. The first lemma shows that with high probabil-
ity any function in the confidence set has low Bellman-error over the collected datasetsD1, . . . ,DH
as well as the distributions from which D1, . . . ,DH are sampled.

Lemma 24 Let ρ > 0 be an arbitrary fixed number. If we choose β = c
(

log[KHNF (ρ)/δ]+Kρ
)

with some large absolute constant c in Algorithm 1, then with probability at least 1 − δ, for all
(k, h) ∈ [K]× [H], we have

(a)
∑k−1

i=1 E[
(
fkh (sh, ah)− (T fkh+1)(sh, ah)

)2 | sh, ah ∼ πi]≤O(β).

(b)
∑k−1

i=1

(
fkh (sih, a

i
h)− (T fkh+1)(sih, a

i
h)
)2≤O(β),

where (si1, a
i
1, . . . , s

i
H , a

i
H , s

i
H+1) denotes the trajectory sampled by following πi in the ith episode.

The second lemma guarantees that the optimal value function is inside the confidence with high
probability. As a result, the selected value function fk in each iteration shall be an upper bound of
Q? with high probability.

Lemma 25 Under the same condition of Lemma 24, with probability at least 1 − δ, we have
Q? ∈ Bk for all k ∈ [K].

The proof of Lemma 24 and 25 relies on standard martingale concentration (e.g. Freedman’s in-
equality) and can be found in Appendix C.3.

Step 1. Bounding the regret by Bellman error By Lemma 25, we can upper bound the cumula-
tive regret by the summation of Bellman error with probability at least 1− δ:

K∑
k=1

(
V ?

1 (s1)− V πk

1 (s1)
)
≤

K∑
k=1

(
max
a

fk1 (s1, a)− V πk

1 (s1)
)

(i)
=

K∑
k=1

H∑
h=1

E(fk, πk, h), (6)

where (i) follows from standard policy loss decomposition (e.g. Lemma 1 in Jiang et al. (2017)).
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Step 2. Bounding cumulative Bellman error using DE dimension Next, we focus on a fixed
step h and bound the cumulative Bellman error

∑K
k=1 E(fk, πk, h) using Lemma 24. To proceed,

we need the following lemma to control the accumulating rate of Bellman error.

Lemma 26 Given a function class G defined on X with |g(x)| ≤ C for all (g, x) ∈ G × X , and
a family of probability measures Π over X . Suppose sequence {gk}Kk=1 ⊂ G and {µk}Kk=1 ⊂ Π

satisfy that for all k ∈ [K],
∑k−1

t=1 (Eµt [gk])2 ≤ β. Then for all k ∈ [K] and ω > 0,
k∑
t=1

|Eµt [gt]| ≤ O
(√

dimDE(G,Π, ω)βk + min{k, dimDE(G,Π, ω)}C + kω
)
.

Lemma 26 is a simple modification of Lemma 2 in Russo and Van Roy (2013) and its proof can
be found in Appendix C.4. We provide two ways to apply Lemma 26, which can produce regret
bounds in term of two different complexity measures. If we invoke Lemma 24 (a) and Lemma 26
with 

ρ =
1

K
, ω =

√
1

K
, C = 1,

X = S ×A, G = (I − Th)F , Π = DF ,h,

gk = fkh − Thfkh+1 and µk = Pπ
k
(sh = ·, ah = ·),

we obtain
k∑
t=1

E(f t, πt, h) ≤ O
(√

k · dimBE(F ,DF ,
√

1/K) log[KHNF (1/K)/δ]

)
. (7)

We can also invoke Lemma 24 (b) and Lemma 26 with
ρ =

1

K
, ω =

√
1

K
, C = 1,

X = S ×A, G = (I − Th)F , and Π = D∆,h,

gk = fkh − Thfkh+1 and µk = 1{· = (skh, a
k
h)},

and obtain
k∑
t=1

E(f t, πt, h) ≤
k∑
t=1

(f th − T f th+1)(sth, a
t
h) +O

(√
k log(k)

)
≤O

(√
k · dimBE(F ,D∆,

√
1/K) log[KHNF (1/K)/δ]

)
,

(8)

where the first inequality follows from standard martingale concentration.
Plugging either equation (7) or (8) back into equation (6) completes the proof.

C.2. Proof of Corollary 15

Step 1. Bounding the regret by Bellman error By Lemma 25, we can upper bound the cumula-
tive regret by the summation of Bellman error with probability at least 1− δ:

K∑
k=1

(
V ?

1 (s1)− V πk

1 (s1)
)
≤

K∑
k=1

(
max
a

fk1 (s1, a)− V πk

1 (s1)
)

(i)
=

K∑
k=1

H∑
h=1

E(fk, πk, h), (9)

where (i) follows from standard policy loss decomposition (e.g. Lemma 1 in Jiang et al. (2017)).
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Step 2. Bounding cumulative Bellman error using DE dimension Next, we focus on a fixed
step h and bound the cumulative Bellman error

∑K
k=1 E(fk, πk, h) using Lemma 24.

If we invoke Lemma 24 (a) with

ρ =
ε2

H2 · dimBE(F ,DF , ε/H)
,

and Lemma 26 with 
ω =

ε

H
, C = 1,

X = S ×A, G = (I − Th)F , Π = DF ,h,

gk = fkh − Thfkh+1 and µk = Pπ
k
(sh = ·, ah = ·),

we obtain with probability at least 1− 10−3,

1

K

K∑
k=1

E(fk, πk, h) ≤O

(√
dimBE(F ,DF , ε/H)[

log[KHNF (ρ)]

K
+ ρ] +

ε

H

)

≤O

(
ε

H
+

√
d log[KHNF (ρ)]

K

)
,

(10)

where the second inequality follows from the choice of ρ and d := dimBE(F ,DF , ε/H). Now we
need to choose K such that √

d log[KHNF (ρ)]

K
≤ ε

H
. (11)

By simple calculation, one can verify it suffices to choose

K =
H2d log(HdNF (ρ)/ε)

ε2
. (12)

Plugging equation (10) back into equation (9) completes the proof. We can similarly prove the
bound in terms of the BE dimension with respect to D∆.

C.3. Proof of concentration lemmas

To begin with, recall the Freedman’s inequality that controls the sum of martingale difference by
the sum of their predicted variance.

Lemma 27 (Freedman’s inequality (e.g., Agarwal et al. (2014))) Let (Zt)t≤T be a real-valued
martingale difference sequence adapted to filtration Ft, and let Et[·] = E[· | Ft]. If |Zt| ≤ R almost
surely, then for any η ∈ (0, 1

R) it holds that with probability at least 1− δ,

T∑
t=1

Zt ≤ O

η
√√√√ T∑

t=1

Et−1[Z2
t ] +

R log(δ−1)

η

.
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C.3.1. PROOF OF LEMMA 24

Proof We prove inequality (b) first.
Consider a fixed (k, h, f) tuple. Let

Xt(h, f) := (f(sth, a
t
h)− rth − f(sth+1, πf (sth+1)))2 − (T f(sth, a

t
h)− rth − f(sth+1, πf (sth+1)))2

and Ft,h be the filtration induced by {si1, ai1, ri1, . . . , siH}
t−1
i=1

⋃
{st1, at1, rt1, . . . , sth, ath}. We have

E[Xt(h, f) | Ft,h] = [(f − T f)(sth, a
t
h)]2

and

Var[Xt(h, f) | Ft,h] ≤ E[(Xt(h, f))2 | Ft,h] ≤ 36[(f − T f)(sth, a
t
h)]2 = 36E[Xt(h, f) | Ft,h].

By Freedman’s inequality, we have, with probability at least 1− δ,∣∣∣∣∣
k∑
t=1

Xt(h, f)−
k∑
t=1

E[Xt(h, f) | Ft,h]

∣∣∣∣∣ ≤ O

√√√√ k∑

t=1

E[Xt | Ft,h] + log(1/δ)

.
Let Zρ be a ρ-cover of F . Now taking a union bound for all (k, h, g) ∈ [K]× [H]×Zρ, we obtain
that with probability at least 1− δ, for all (k, h, g) ∈ [K]× [H]×Zρ∣∣∣∣∣

k∑
t=1

Xt(h, g)−
k∑
t=1

E[(g − T g)(sth, a
t
h)]2

∣∣∣∣∣ ≤ O

√√√√ k∑

t=1

[(g − T g)(sth, a
t
h)]2 + ι

, (13)

where ι = log(HK|Zρ|/δ). From now on, we will do all the analysis conditioning on this event
being true.

Consider an arbitrary (h, k) ∈ [H]× [K] pair. By the definition of Bk and fk ∈ Bk,

k−1∑
t=1

Xt(h, f
k) =

k−1∑
t=1

(fk(sth, a
t
h)− rth − fk(sth+1, πfk(sth+1)))2

−
k−1∑
t=1

(T fk(sth, ath)− rth − fk(sth+1, πfk(sth+1)))2

≤
k−1∑
t=1

(fk(sth, a
t
h)− rth − fk(sth+1, πfk(sth+1)))2

− inf
g∈F

k−1∑
t=1

(g(sth, a
t
h)− rth − fk(sth+1, πfk(sth+1)))2 ≤ O(ι+ kρ).

Define gk = argming∈Zρ maxh∈[H] ‖fkh − gkh‖∞. By the definition of Zρ, we have∣∣∣∣∣
k−1∑
t=1

Xt(h, f
k)−

k−1∑
t=1

Xt(h, g
k)

∣∣∣∣∣ ≤ O(kρ).
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Therefore,
k−1∑
t=1

Xt(h, g
k) ≤ O(ι+ kρ). (14)

Recall inequality (13) implies∣∣∣∣∣
k−1∑
t=1

Xt(h, g
k)−

k−1∑
t=1

[(gk − T gk)(sth, ath)]2

∣∣∣∣∣ ≤ O

√√√√k−1∑

t=1

[(gk − T gk)(sth, ath)]2 + ι

. (15)

Putting (14) and (15) together, we obtain

k−1∑
t=1

[(gk − T gk)(sth, ath)]2 ≤ O(ι+ kρ).

Because gk is an ρ-approximation to fk, we conclude

k−1∑
t=1

[(fk − T fk)(sth, ath)]2 ≤ O(ι+ kρ).

Therefore, we prove inequality (b) in Lemma 24.
To prove inequality (a), we only need to redefine Ft,h to be the filtration induced by

{si1, ai1, ri1, . . . , siH}
t−1
i=1 and then repeat the arguments above verbatim.

C.3.2. PROOF OF LEMMA 25

Proof Consider an arbitrary fixed (k, h, f) tuple. Let

Wt(h, f) := (f(sth, a
t
h)−rth−Q?(sth+1, πQ?(s

t
h+1)))2−(Q?(sth, a

t
h)−rth−Q?(sth+1, πQ?(s

t
h+1)))2

and Ft,h be the filtration induced by {si1, ai1, ri1, . . . , siH}
t−1
i=1

⋃
{st1, at1, rt1, . . . , sth, ath}. We have

E[Wt(h, f) | Ft,h] = [(f −Q?)(sth, ath)]2

and

Var[Wt(h, f) | Ft,h] ≤ E[(Wt(h, f))2 | Ft,h] ≤ 36((f −Q?)(sth, ath))2 = 36E[Wt(h, f) | Ft,h].

By Freedman’s inequality, with probability at least 1− δ,∣∣∣∣∣
k∑
t=1

Wt(h, f)−
k∑
t=1

[(f −Q?)(sth, ath)]2

∣∣∣∣∣ ≤ O

√√√√ k∑

t=1

[(f −Q?)(sth, ath)]2 + log(1/δ)

.
Taking a union bound over [K]× [H]×Zρ and note

∑k
t=1[(f −Q?)(sth, ath)]2 being nonnegative,

we obtain that with probability at least 1− δ, for all (k, h, g) ∈ [K]× [H]×Zρ

−
k∑
t=1

Wt(h, g) ≤ O(ι),
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where ι = log(HK|Zρ|/δ). This directly implies for all (k, h, f) ∈ [K]× [H]×F

k−1∑
t=1

(Q?(sth, a
t
h)− rth −Q?(sth+1, πQ?(s

t
h+1)))2

≤
k−1∑
t=1

(f(sth, a
t
h)− rth −Q?(sth+1, πQ?(s

t
h+1)))2 +O(ι+ kρ).

Finally, by recalling the definition of Bk, we conclude that with probability at least 1− δ, Q? ∈ Bk
for all k ∈ [K].

C.4. Proof of Lemma 26 (modification of Appendix C in Russo and Van Roy (2013))

We first prove the following proposition which bounds the number of times |Eµt [gt]| can exceed a
certain threshold.

Proposition 28 Given a function class G defined on X , and a family of probability measures
Π over X . Suppose sequence {gk}Kk=1 ⊂ G and {µk}Kk=1 ⊂ Π satisfy that for all k ∈ [K],∑k−1

t=1 (Eµt [gk])2 ≤ β. Then for all k ∈ [K],

k∑
t=1

1
{
|Eµt [gt]| > ε

}
≤ (

β

ε2
+ 1) dimDE(G,Π, ε).

Proof [Proof of Proposition 28] We first show that if for some k we have |Eµk [gk]| > ε, then µk
is ε-independent of at most β/ε2 disjoint subsequences in {µ1, . . . , µk−1}. By definition of DE di-
mension, if |Eµk [gk]| > ε and µk is ε-dependent on a subsequence {ν1, . . . , ν`} of {µ1, . . . , µk−1},
then we should have

∑`
t=1(Eνt [gk])2 ≥ ε2. It implies that if µk is independent of L disjoint subse-

quences in {µ1, . . . , µk−1}, we have

β ≥
k−1∑
t=1

(Eµt [gk])2 ≥ Lε2

resulting in L ≤ β/ε2.
Now we want to show that for any sequence {ν1, . . . , νκ} ⊆ Π, there exists j ∈ [κ] such that νj

is ε-dependent on at least L = d(κ− 1)/ dimDE(G,Π, ε)e disjoint subsequences in {ν1, . . . , νj−1}.
We argue by the following mental procedure: we start with singleton sequencesB1 = {ν1}, . . . , BL
= {νL} and j = L + 1. For each j, if νj is ε-dependent on B1, . . . , BL we already achieved our
goal so we stop; otherwise, we pick an i ∈ [L] such that νj is ε-independent of Bi and update
Bi = Bi ∪ {νj}. Then we increment j by 1 and continue this process. By the definition of DE
dimension, the size of each B1, . . . , BL cannot get bigger than dimDE(G,Π, ε) at any point in this
process. Therefore, the process stops before or on j = LdimDE(G,Π, ε) + 1 ≤ κ.

Fix k ∈ [K] and let {ν1, . . . , νκ} be subsequence of {µ1, . . . , µk}, consisting of elements for
which |Eµt [gt]| > ε. Using the first claim, we know that each νj is ε-dependent on at most β/ε2
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disjoint subsequences of {ν1, . . . , νj−1}. Using the second claim, we know there exists j ∈ [κ] such
that νj is ε-dependent on at least (κ/dimDE(G,Π, ε))− 1 disjoint subsequences of {ν1, . . . , νj−1}.
Therefore, we have (κ− 1)/dimDE(G,Π, ε) ≤ β/ε2 which results in

κ ≤ (
β

ε2
+ 1) dimDE(G,Π, ε)

and completes the proof.

Proof [Proof of Lemma 26] Fix k ∈ [K]; let d = dimDE(G,Π, δ). Sort the sequence {|Eµ1 [g1]|, . . . ,
|Eµk [gk]|} in a decreasing order and denote it by {e1, . . . , ek} (e1 ≥ e2 ≥ · · · ≥ ek).

k∑
t=1

|Eµt [gt]| =
k∑
t=1

et =
k∑
t=1

et1
{
et ≤ δ

}
+

k∑
t=1

et1
{
et > δ

}
≤ kδ +

k∑
t=1

et1
{
et > δ

}
.

For t ∈ [k], we want to prove that if et > δ, then we have et ≤ min{
√

dβ
t−d , C}. Assume t ∈ [k]

satisfies et > δ. Then there exists α such that et > α ≥ δ. By Proposition 28, we have

t ≤
k∑
i=1

1
{
ei > α

}
≤
( β
α2

+ 1
)

dimDE(G,Π, α) ≤
( β
α2

+ 1
)

dimDE(G,Π, δ),

which implies α ≤
√

dβ
t−d . Besides, recall et ≤ C, so we have et ≤ min{

√
dβ
t−d , C}.

Finally, we have

k∑
t=1

et1
{
et > δ

}
≤ min{d, k}C +

k∑
t=d+1

√
dβ

t− d
≤ min{d, k}C +

√
dβ

∫ k

0

1√
t
dt

≤ min{d, k}C + 2
√
dβk,

which completes the proof.

Appendix D. Proof for Section 5

In this section, we provide the formal proof for the results stated in Section 5.

D.1. Full proof of Theorem 17

Proof [Proof of Theorem 17] By standard concentration arguments (Hoeffding’s inequality plus
union bound argument), with probability at least 1−δ, the following events hold for the first dH+1
phases (please refer to Appendix D.2 for the proof)

1. If the elimination procedure is activated at the hth step in the kth phase, then E(fk, πk, h) >
ζact/2 and all f ∈ F satisfying |E(f, πk, h)| ≥ 2ζelim get eliminated.

2. If the elimination procedure is not activated in the kth phase, then,
∑H

h=1 E(fk, πk, h) <
2Hζact = 4ε.
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3. Q? is not eliminated.

Therefore, if we can show OLIVE terminates within dH + 1 phases, then with high probability
the output policy is 4ε-optimal by the optimism of fk and simple policy loss decomposition (e.g.
Lemma 1 in Jiang et al. (2017)):

(
V ?

1 (s1)− V πk

1 (s1)
)
≤ max

a
fk(s1, a)− V πk(s1)=

H∑
h=1

E(fk, πk, h) ≤ 4ε. (16)

In order to prove that OLIVE terminates within dH + 1 phases, it suffices to show that for each
h ∈ [H], we can activate the elimination procedure at the hth step for at most d times.

For the sake of contradiction, assume that OLIVE does not terminate in dH + 1 phases. Within
these dH + 1 phases, there exists some h ∈ [H] for which the activation process has been activated
for at least d + 1 times. Denote by k1 < · · · < kd+1 ≤ dH + 1 the indices of the phases where
the elimination is activated at the hth step. By the high-probability events, for all i < j ≤ d + 1,
we have |E(fkj , πki , h)| < 2ζelim and for all l ≤ d + 1, we have E(fkl , πkl , h) > ζact/2. This

means for all l ≤ d + 1, we have both
√∑l−1

i=1

(
E(fkl , πki , h)

)2
<
√
d × 2ζelim = ε/H and

E(fkl , πkl , h) > ζact/2 = ε/H . Therefore, the roll-in distribution of πk1 , . . . , πkd+1 at step h is an
ε/H-independent sequence of length d+ 1, which contradicts with the definition of BE dimension.
So OLIVE should terminate within dH + 1 phases.

In sum, with probability at least 1−δ, Algorithm 2 will terminate and output a 4ε-optimal policy
using at most

(dH + 1)(nact + nelim) ≤ 3cH3d2 log(N (F , ζelim/8)) · ι
ε2

episodes.

D.2. Concentration arguments for Theorem 17

Recall in Algorithm 2 we choose

ζact =
2ε

H
, ζelim =

ε

2H
√
d
, nact =

cH2ι

ε2
, and nelim =

cH2d log(N (F , ζelim/8)) · ι
ε2

,

where d = maxh∈[H] dimBE

(
F ,DF ,h, ε/H

)
, ι = log[Hd/δε] and c is a large absolute constant.Our

goal is to prove with probability at least 1− δ, the following events hold for the first dH + 1 phases

1. If the elimination procedure is activated at the hth step in the kth phase, then E(fk, πk, h) >
ζact/2 and all f ∈ F satisfying |E(f, πk, h)| ≥ 2ζelim get eliminated.

2. If the elimination procedure is not activated in the kth phase, then,
∑H

h=1 E(fk, πk, h) <
2Hζact = 4ε.

3. Q? is not eliminated.

We begin with the activation procedure.
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Concentration in the activation procedure Consider a fixed (k, h) ∈ [dH + 1] × [H] pair. By
Azuma-Hoefdding’s inequality, with probability at least 1− δ

8H(dH2+1)
, we have

|Ê(fk, πk, h)− E(fk, πk, h)| ≤ O
(√

ι

nact

)
≤ ε

2H
≤ ζact/4,

where the second inequality follows from nact = CH2ι
ε2

with C being chosen large enough.
Take a union bound for all (k, h) ∈ [dH + 1]× [H], we have with probability at least 1− δ/4,

the following holds for all (k, h) ∈ [dH + 1]× [H]

|Ê(fk, πk, h)− E(fk, πk, h)| ≤ ζact/4.

By Algorithm 2, if the elimination procedure is not activated in the kth phase, we have∑H
h=1 Ê(fk, πk, h) ≤ Hζact. Combine it with the concentration argument we just proved,

H∑
h=1

E(fk, πk, h) ≤
H∑
h=1

Ê(fk, πk, h) +
Hζact

4
<

5Hζact

4
.

On the other hand, if the elimination procedure is activated at the hth step in the kth phase, then
Ê(fk, πk, h) > ζact. Again combine it with the concentration argument we just proved,

E(fk, πk, h) ≥ Ê(fk, πk, h)− ζact

4
>

3ζact

4
.

Concentration in the elimination procedure Now, let us turn to the elimination procedure. First,
let Z be an ζelim/8-cover of F with cardinality N (F , ζelim/8). With a little abuse of notation, for
every f ∈ F , define f̂ = argming∈Z maxh∈[H] ‖fh − gh‖∞. By applying Azuma-Hoeffding’s
inequality to all (k, g) ∈ [dH + 1]×Z and taking a union bound, we have with probability at least
1− δ/4, the following holds for all (k, g) ∈ [dH + 1]×Z

|Ê(g, πk, hk)− E(g, πk, hk)| ≤ ζelim/4.

Recall that Algorithm 2 eliminates all f satisfying |Ê(f, πk, hk)| > ζelim when the elimination
procedure is activated at the hth

k step in the kth phase. Therefore, if |E(f, πk, hk)| ≥ 2ζelim, f will
be eliminated because

|Ê(f, πk, hk)| ≥ |Ê(f̂ , πk, hk)| − 2× ζelim

8

≥ |E(f̂ , πk, hk)| −
ζelim

2

≥ |E(f, πk, hk)| −
ζelim

2
− 2× ζelim

8
> ζelim.

Finally, note that E(Q?, π, h) ≡ 0 for any π and h. As a result, it will never be eliminated within
the first dH + 1 phases because we can similarly prove

|Ê(Q?, πk, hk)| ≤ |E(Q?, πk, hk)|+
3ζelim

4
< ζelim.

Wrapping up: take a union bound for the activation and elimination procedure, and conclude
that the three events, listed at the beginning of this section, hold for the the first dH + 1 phases with
probability at least 1− δ/2.
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Appendix E. Proof for Appendix A

In this section, we provide the formal proof for the results stated in Section A.

E.1. Proof of Theorem 21 (similar to Appendix D)

Proof [Proof of Theorem 21] By standard concentration arguments (Hoeffding’s inequality, Bern-
stein’s inequality, and union bound argument), with probability at least 1 − δ, the following events
hold for the first dH + 1 phases (please refer to Appendix E.1.1 for the proof)

1. If the elimination procedure is activated at the hth step in the kth phase, then EII(f
k, πk, h) >

ζact/2 and all f ∈ F satisfying |EII(f, π
k, h)| ≥ 2ζelim get eliminated.

2. If the elimination procedure is not activated in the kth phase, then,
∑H

h=1 EII(f
k, πk, h) <

2Hζact = 4ε.

3. Q? is not eliminated.

Therefore, if we can show OLIVE terminates within dH + 1 phases, then with high probability
the output policy is 4ε-optimal by the optimism of fk and simple policy loss decomposition (e.g.,
Lemma 1 in Jiang et al. (2017)):

(
V ?

1 (s1)− V πk

1 (s1)
)
≤ max

a
fk(s1, a)− V πk(s1)=

H∑
h=1

EII(f
k, πk, h) ≤ 4ε. (17)

In order to prove that OLIVE terminates within dH + 1 phases, it suffices to show that for each
h ∈ [H], we can activate the elimination procedure at the hth step for at most d times.

For the sake of contradiction, assume that OLIVE does not terminate in dH + 1 phases. Within
these dH + 1 phases, there exists some h ∈ [H] for which the activation process has been activated
for at least d + 1 times. Denote by k1 < · · · < kd+1 ≤ dH + 1 the indices of the phases where
the elimination is activated at the hth step. By the high-probability events, for all i < j ≤ d + 1,
we have |EII(f

kj , πki , h)| < 2ζelim and for all l ≤ d + 1, we have EII(f
kl , πkl , h) > ζact/2. This

means for all l ≤ d + 1, we have both
√∑l−1

i=1

(
EII(fkl , πki , h)

)2
<
√
d × 2ζelim = ε/H and

EII(f
kl , πkl , h) > ζact/2 = ε/H . Therefore, the roll-in distribution of πk1 , . . . , πkd+1 at step h is

an ε/H-independent sequence of length d + 1 with respect to (I − Th)VF , which contradicts with
the definition of BE dimension. So OLIVE should terminate within dH + 1 phases.

In sum, with probability at least 1−δ, Algorithm 2 will terminate and output a 4ε-optimal policy
using at most

(dH + 1)(nact + nelim) ≤ 3cH3d2|A| log(|F|) · ι
ε2

episodes.

E.1.1. CONCENTRATION ARGUMENTS FOR THEOREM 21

Recall in Algorithm 3 we choose

ζact =
2ε

H
, ζelim =

ε

2H
√
d
, nact =

cH2ι

ε2
, and nelim =

c|A|H2d log(N (F , ζelim/8)) · ι
ε2

,
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where d = maxh∈[H] dimBEII

(
F ,DF ,h, ε/H

)
, ι = log[Hd/δε] and c is a large absolute constant.

Our goal is to prove with probability at least 1 − δ, the following events hold for the first dH + 1
phases

1. If the elimination procedure is activated at the hth step in the kth phase, then EII(f
k, πk, h) >

ζact/2 and all f ∈ F satisfying |EII(f, π
k, h)| ≥ 2ζelim get eliminated.

2. If the elimination procedure is not activated in the kth phase, then,
∑H

h=1 EII(f
k, πk, h) <

2Hζact = 4ε.

3. Q? is not eliminated.

We begin with the activation procedure.

Concentration in the activation procedure Consider a fixed (k, h) ∈ [dH + 1] × [H] pair. By
Azuma-Hoefdding’s inequality, with probability at least 1− δ

8H(dH+1) , we have

|ẼII(f
k, πk, h)− EII(f

k, πk, h)| ≤ O
(√

ι

nact

)
≤ ε

2H
≤ ζact/4,

where the second inequality follows from nact = CH2ι
ε2

with C being chosen large enough.
Take a union bound for all (k, h) ∈ [dH + 1]× [H], we have with probability at least 1− δ/4,

the following holds for all (k, h) ∈ [dH + 1]× [H]

|ẼII(f
k, πk, h)− EII(f

k, πk, h)| ≤ ζact/4.

By Algorithm 3, if the elimination procedure is not activated in the kth phase, we have∑H
h=1 ẼII(f

k, πk, h) ≤ Hζact. Combine it with the concentration argument we just proved,

H∑
h=1

EII(f
k, πk, h) ≤

H∑
h=1

ẼII(f
k, πk, h) +

Hζact

4
≤ 5Hζact

4
.

On the other hand, if the elimination procedure is activated at the hth step in the kth phase, then
ẼII(f

k, πk, h) > ζact. Again combine it with the concentration argument we just proved,

EII(f
k, πk, h) ≥ ẼII(f

k, πk, h)− ζact

4
>

3ζact

4
.

Concentration in the elimination procedure Now, let us turn to the elimination procedure. We
start by bounding the the second moment of

1[πf (sh) = ah]

1/|A|
(
fh(sh, ah)− rh −max

a′∈A
fh+1(sh+1, a

′)
)

for all f ∈ F . Let y(sh, ah, rh, sh+1) = fh(sh, ah)− rh−maxa′∈A fh+1(sh+1, a
′) ∈ [−2, 1], then

we have

E[
(
|A|1[πf (sh) = ah]y(sh, ah, rh, sh+1)

)2 | sh ∼ πk, ah ∼ Uniform(A)]

≤4|A|2E[1[πf (sh) = ah] | sh ∼ πk, ah ∼ Uniform(A)] = 4|A|.
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For a fixed (k, f) ∈ [dH + 1] × F , by applying Azuma-Bernstein’s inequality, with probability at
least 1− δ

8(dH+1)|F| we have

|ÊII(f, π
k, hk)− EII(f, π

k, hk)| ≤ O

√ |A|ι′
nelim

+
|A|ι′

nelim

 ≤ O
√ |A|ι′

nelim

 ≤ ζelim/2,

where ι′ = log[8(dH + 1)|F|/δ], and the third inequality follows from nelim = C|A|ι/ζ2
elim with

C being chosen large enough.
Taking a union bound over [dH+1]×F , we have with probability at least 1−δ/4, the following

holds for all (k, f) ∈ [dH + 1]×F

|ÊII(f, π
k, hk)− EII(f, π

k, hk)| ≤ ζelim/2.

Recall that Algorithm 3 eliminates all f satisfying |ÊII(f, π
k, hk)| > ζelim when the elimination

procedure is activated at the hth
k step in the kth phase. Therefore, if |EII(f, π

k, hk)| ≥ 2ζelim, f will
be eliminated because

|ÊII(f, π
k, hk)| ≥ |EII(f, π

k, hk)| −
ζelim

2
> ζelim.

Finally, note that EII(Q
?, π, h) ≡ 0 for any π and h. As a result, it will never be eliminated within

the first dH + 1 phases because we can similarly prove

|ÊII(Q
?, πk, hk)| ≤ |EII(Q

?, πk, hk)|+
ζelim

2
< ζelim.

Wrapping up: take a union bound for the activation and elimination procedure, and conclude
that the three events, listed at the beginning of this section, hold for the the first dH + 1 phases with
probability at least 1− δ/2.

E.2. Proof of Theorem 22 (similar to Appendix C.2)

The proof is basically the same as that of Theorem 14 in Appendix C.
To begin with, we have the following lemma (akin to Lemma 24 and 25) showing that with high

probability: (i) any function in the confidence set has low Bellman-error over the collected Datasets
D1, . . . ,DH as well as the distribution from which D1, . . . ,DH are sampled; (ii) the optimal value
function is inside the confidence set. Its proof is almost identical to that of Lemma 24 and 25 which
can be found in Appendix C.3.

Lemma 29 (Akin to Lemma 24 and 25) Let ρ > 0 be an arbitrary fixed number. If we choose
β = c

(
log[KHNF (ρ)/δ] + Kρ

)
with some large absolute constant c in Algorithm 4, then with

probability at least 1− δ, for all (k, h) ∈ [K]× [H], we have

(a)
∑k−1

i=1 E[
(
fkh (sh, ah)− (T fkh+1)(sh, ah)

)2 | sh ∼ πi, ah ∼ Uniform(A)]≤O(β),

(b) 1
|A|
∑k−1

i=1

∑
a∈A

(
fkh (sih, a)− (T fkh+1)(sih, a)

)2≤O(β),

(c) Q? ∈ Bk for all k ∈ [K],
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where sih denotes the state at step h collected according to Line 5 in Algorithm 4 following πi.

Proof [Proof of Lemma 29] To prove inequality (a), we only need to redefine the filtration Ft,h
in Appendix C.3.1 to be the filtration induced by {si1, ai1, ri1, . . . , siH}

t−1
i=1 and repeat the arguments

there verbatim.
To prove inequality (b), we only need to redefine the filtration Ft,h in Appendix C.3.1 to be the

filtration induced by {si1, ai1, ri1, . . . , siH}
t−1
i=1

⋃
{st1, at1, rt1, . . . , sth} and repeat the arguments there

verbatim.
The proof of (c) is the same as that of Lemma 25 in Appendix C.3.2.

Step 1. Bounding the regret by Bellman error By Lemma 29 (c), we can upper bound the
cumulative regret by the summation of Bellman error with probability at least 1− δ:

K∑
k=1

(
V ?

1 (s1)− V πk

1 (s1)
)
≤

K∑
k=1

(
max
a

fk1 (s1, a)− V πk

1 (s1)
)

(i)
=

K∑
k=1

H∑
h=1

EII(f
k, πk, h), (18)

where (i) follows from standard policy loss decomposition (e.g. Lemma 1 in Jiang et al. (2017)).

Step 2. Bounding cumulative Bellman error using DE dimension Next, we focus on a fixed
step h and bound the cumulative Bellman error

∑K
k=1 EII(f

k, πk, h) using Lemma 29.
Invoking Lemma 29 (a) with

ρ =
ε2

H2 · dimBEII
(F ,DF , ε/H) · |A|

implies that with probability at least 1− δ, for all (k, h) ∈ [K]× [H], we have

k−1∑
i=1

E
[(
fkh (sh, πfkh

(sh))− (T fkh+1)(sh, πfkh
(sh))

)2
| sh ∼ πi

]
≤O(|A|β).

Further invoking Lemma 26 with
ω =

ε

H
, C = 1,

X = S, G = (I − Th)VF , Π = DF ,h,

gk(s) := (fkh − Thfkh+1)(s, πfkh
(s)) and µk = Pπ

k
(sh = ·),

we obtain

1

K

K∑
t=1

EII(f
t, πt, h) ≤ O

(√
dimBEII

(F ,DF , ε/H)|A| log[KHNF (ρ)/δ]

K
+

ε

H

)
.

Plugging in the choice of K completes the proof.
Similarly, for D∆, we can invoke Lemma 29 (b) witht

ρ =
ε2

H2 · dimBEII
(F ,D∆, ε/H) · |A|

,
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and Lemma 26 with
ω =

ε

H
, C = 1,

X = S, G = (I − Th)VF , Π = D∆,h,

gk(s) := (fkh − Thfkh+1)(s, πfkh
(s)) and µk = 1{· = skh},

and obtain

1

K

K∑
t=1

EII(f
t, πt, h) ≤ 1

K

K∑
t=1

(f th − T f th+1)(sth, πf th
(sth)) +O

(√
logK

K

)

≤O

(√
dimBEII

(F ,D∆, ε/H)|A| log[KHNF (ρ)/δ]

K
+

ε

H
+

√
logK

K

)
,

where the first inequality follows from standard martingale concentration.
Plugging in the choice of K completes the proof.

Appendix F. Auxiliary Results

In this section, we state and prove some auxiliary results.

F.1. Review of relevant definitions in previous works

In this section, we review the definition of some existing function approximation settings in ascend-
ing order of generality. We start with the definition of linear MDPs (e.g., Jin et al., 2020).

Definition 30 (linear MDPs) We say an MDP is linear of dimension d if for each h ∈ [H], there
exist feature mappings φh : S × A → Rd, ψh : S → Rd and vector θrh ∈ Rd such that Ph(s′ |
s, a) = φh(s, a)>ψh(s′) and rh(s, a) = φh(s, a)>θrh.

We remark that existing works (e.g., Jin et al., 2020) usually assume φ is known in advance while ψ
and θr are unknown. Next, we review the linear function approximation setting (e.g., Zanette et al.,
2020a).

Definition 31 (linear realizability and linear completeness) We say an MDP satisfies d-dimensional
linear realizability with respect to feature mapping φ = {φh : S × A → Rd}h∈[H] if for each
h ∈ [H], there exists a vector θ?h ∈ Rd such that Q?h(·) = φh(·)>θ?h. Moreover, we say it satisfies
linear completeness with respect to φ if for each h ∈ [H] and θ ∈ Rd, there exists θ′ ∈ Rd such that
(T fθ,h+1)(s, a) = φh(s, a)>θ′ for all (s, a) ∈ S ×A, where fθ,h+1(·) = φh+1(·)>θ.

We make two comments here. Firstly, previous works (Jin et al., 2020; Zanette et al., 2020a) prove
that linear MDPs always satisfy linear realizability and linear completeness with the same ambient
dimension. Secondly, only assuming linear realizability is insufficient for sample-efficient learning
because exponential lower bounds for sample complexity is known in that case (Weisz et al., 2020).

Finally, we briefly discuss the Bellman rank proposed by Jiang et al. (2017) (see Definition 9).
Unlike the setting of linear MDPs or linear realizability and completeness, the feature mappings φ
and ψ in the definition of Bellman rank are assumed to be unknown. The following lemma claims
that any RL problems admitting d-dimensional linear realizability and completeness have Bellman
rank at most d.
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Lemma 32 Suppose MDP M satisfies d-dimensional linear realizability and completeness with
respect to feature mapping φ. Define θ := (θ1, . . . , θH) ∈ Rd×H , and fθ,h(s, a) := φh(s, a)>θh
for all (s, a) ∈ S × A and h ∈ [H]. ThenM and F := {fθ = (fθ,1, . . . , fθ,H , 0) : θ ∈ Rd×H}
have Bellman rank at most d.

Proof The proof follows directly from the definitions of linear completeness and Bellman rank.
Consider an arbitrary θ ∈ Rd×H and h ∈ [H]. By linear completeness, there exists θ̂h ∈ Rd

such that (T fθ,h+1)(s, a) = φh(s, a)>θ̂h for all (s, a) ∈ S × A. Let π be an arbitrary policy. We
have

E(fθ, π, h) = Eπ[(fθ,h − T fθ,h+1)(sh, ah)] =
〈
Eπ[φh(sh, ah)], θh − θ̂h

〉
. (19)

We conclude the proof by noting that Eπ[φh(sh, ah)] ∈ Rd only depends on (π, h) and θh−θ̂h ∈ Rd
is fully determined by (fθ, h).

F.2. dimBE

(
F ,DF , ε

)
versus dimBE

(
F ,D∆, ε

)
In this paper, we have mainly focused on the BE dimension induced by two special distribution
families: (a) DF — the roll-in distributions produced by executing the greedy policies induced by
the functions in F , (b) D∆ — the collection of all Dirac distributions. And we prove that both low
dimBE

(
F ,DF , ε

)
and low dimBE

(
F ,D∆, ε

)
can imply sample-efficient learning. As a result, it is

natural to ask what is the relation between dimBE

(
F ,DF , ε

)
and dimBE

(
F ,D∆, ε

)
? Is it possible

that one of them is always no larger than the other so that we only need to use the smaller one? We
answer this question with the following proposition, showing that either of them can be arbitrarily
larger than the other.

Proposition 33 There exists absolute constant c such that for any m ∈ N+,

(a) there exist an MDP and a function classF satisfying for all ε ∈ (0, 1/2], dimBE(F ,DF , ε) ≤
c while dimBE(F ,D∆, ε) ≥ m.

(b) there exist an MDP and a function classF satisfying for all ε ∈ (0, 1/2], dimBE(F ,D∆, ε) ≤
c while dimBE(F ,DF , ε) ≥ m.

Proof We prove (a) first. Consider the following contextual bandits problem (H = 1).

• There are m states s1, . . . , sm but the agent always starts at s1. This means the agent can
never visit other states because each episode contains only one step (H = 1).

• There are two actions a1 and a2. The reward function is zero for any state-action pair.

• The function class F1 = {fi(s, a) = 1(s = si) + 1(a = a1) : i ∈ [m]}.

First of all, note in this setting D∆ is the collection of all Dirac distributions over S × A, DF ,1
is a singleton containing only δ(s1,a1), and (I − T1)F is simply F1 because H = 1 and r ≡ 0.
Since DF ,1 has cardinality one, it follows directly from definition that dimBE(F ,D∆, ε) is at most
1. Moreover, it is easy to verify that (s1, a2), (s2, a2), . . . , (sm, am) is a 1-independent sequence
with respect to F because we have fi(sj , a2) = 1(i = j) for all i, j ∈ [m]. As a result, we have
dimBE(F ,D∆, ε) ≥ m for all ε ∈ (0, 1].

Now we come to the proof of (b). Consider the following contextual bandits problem (H = 1).
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• There are 2 states s1 and s2. In each episode, the agent starts at s1 or s2 uniformly at random.

• There are m actions a1, . . . , am. The reward function is zero for any state-action pair.

• The function class F1 = {fi(s, a) = (2 · 1(s = s1)− 1) + 0.5 · 1(a = ai) : i ∈ [m]}.

First of all, note in this setting (I − T1)F is simply F1 and the roll-in distribution induced by
the greedy policy of fi is the uniform distribution over (s1, ai) and (s2, ai), which we denote as
µi. It is easy to verify that µ1, . . . , µm is a 0.5-independent sequence with respect to F because
E(s,a)∼µi [fj(s, a)] = 0.5 · 1(i = j). Therefore, for all ε ∈ (0, 0.5], dimBE(F ,DF , ε) ≥ m.

Next, we upper bound dimBE(F ,D∆, ε) which is equivalent to dimDE(F1,D∆, ε) in this prob-
lem. Assume dimDE(F1,D∆, ε) = k. Then there exist g1, . . . , gk ∈ F1 and w1, . . . , wk ∈ S × A
such that for all i ∈ [k],

√∑i−1
t=1(gi(wi))2 ≤ ε and |gi(wi)| > ε. Note that we have |f(s, a)| ∈

[0.5, 1.5] for all (s, a, f) ∈ S ×A× F1. Therefore, if ε > 1.5, then k = 0; if ε ≤ 1.5, then k ≤ 10

because 0.5×
√
k − 1 ≤

√∑k−1
t=1 (gk(wt))2 ≤ ε ≤ 1.5.
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